Seed desiccation mechanisms co-opted for vegetative desiccation in the resurrection grass Oropetium thomaeum

Robert VanBuren*, Ching Man Wai, Qingwei Zhang, Xiaomin Song, Patrick P. Edger, Doug Bryant, Todd P. Michael, Todd C. Mockler, Dorothea Bartels

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

45 Scopus citations

Abstract

Resurrection plants desiccate during periods of prolonged drought stress, then resume normal cellular metabolism upon water availability. Desiccation tolerance has multiple origins in flowering plants, and it likely evolved through rewiring seed desiccation pathways. Oropetium thomaeum is an emerging model for extreme drought tolerance, and its genome, which is the smallest among surveyed grasses, was recently sequenced. Combining RNA-seq, targeted metabolite analysis and comparative genomics, we show evidence for co-option of seed-specific pathways during vegetative desiccation. Desiccation-related gene co-expression clusters are enriched in functions related to seed development including several seed-specific transcription factors. Across the metabolic network, pathways involved in programmed cell death inhibition, ABA signalling and others are activated during dehydration. Oleosins and oil bodies that typically function in seed storage are highly abundant in desiccated leaves and may function for membrane stability and storage. Orthologs to seed-specific LEA proteins from rice and maize have neofunctionalized in Oropetium with high expression during desiccation. Accumulation of sucrose, raffinose and stachyose in drying leaves mirrors sugar accumulation patterns in maturing seeds. Together, these results connect vegetative desiccation with existing seed desiccation and drought responsive pathways and provide some key candidate genes for engineering improved drought tolerance in crop plants.

Original languageEnglish (US)
Pages (from-to)2292-2306
Number of pages15
JournalPlant, Cell and Environment
Volume40
Issue number10
DOIs
StatePublished - Oct 2017
Externally publishedYes

Keywords

  • comparative genomics
  • desiccation tolerance
  • resurrection plants
  • transcriptomic networks
  • transcriptomics

ASJC Scopus subject areas

  • Physiology
  • Plant Science

Fingerprint

Dive into the research topics of 'Seed desiccation mechanisms co-opted for vegetative desiccation in the resurrection grass Oropetium thomaeum'. Together they form a unique fingerprint.

Cite this