Selective freezing of a dilute salt solution on a cold ice surface

L. J. Fang, F. B. Cheung*, J. H. Linehan, D. R. Pedersen

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

42 Scopus citations


The growth of a solid-liquid, two-phase region during selective freezing of a dilute, eutectic-forming, salt solution over a subcooled ice slab is investigated experimentally and theoretically. The morphology of the two-phase region and the kinetics of the solid-liquid interface observed for a NaCl-H2O system are described photographically. The motion of the two-phase, liquidus front, recorded by a telescopic device that amplifies the local phenomena of the two-phase region, is presented along with the measured transient temperature distribution of the system. Based on the assumption that the solution element of the two-phase region is in local thermodynamic equilibrium with the solid phase, a similarity model is developed to predict the dependence of the freezing rate on various controlling parameters of the system. Transient heat conduction in the ice slab is also included in the model to study the effect of the wall. Comparison is made between the analytical and the experimental results and found to be good.

Original languageEnglish (US)
Pages (from-to)385-393
Number of pages9
JournalJournal of Heat Transfer
Issue number2
StatePublished - May 1984
Externally publishedYes

ASJC Scopus subject areas

  • General Materials Science
  • Condensed Matter Physics
  • Mechanics of Materials
  • Mechanical Engineering


Dive into the research topics of 'Selective freezing of a dilute salt solution on a cold ice surface'. Together they form a unique fingerprint.

Cite this