TY - JOUR
T1 - Selective inhibition of histone deacetylase 6 promotes survival in a rat model of hemorrhagic shock
AU - Chang, Zhigang
AU - Li, Yongqing
AU - He, Wei
AU - Liu, Baoling
AU - Halaweish, Ihab
AU - Bambakidis, Ted
AU - Liang, Yingjian
AU - Alam, Hasan B.
N1 - Publisher Copyright:
© Copyright 2015 Wolters Kluwer Health, Inc. All rights reserved.
PY - 2015/12/1
Y1 - 2015/12/1
N2 - BACKGROUND Hemorrhage is the leading cause of preventable trauma-related deaths. We have previously shown that treatment with Tubastatin A (Tub A), a histone deacetylase 6 (HDAC6) inhibitor, can improve survival in a rodent model of septic shock. The aims of the present study were to determine whether selective inhibition of HDAC6 can promote survival in a model of hemorrhagic shock (HS). METHODS In Experiment I (survival study), Wistar-Kyoto rats were subjected to HS (55% volume blood loss), followed by intraperitoneal injection of either Tub A (70 mg/kg) dissolved in dimethyl sulfoxide (DMSO) or DMSO only (vehicle group) (n = 8 per group). Survival was monitored for 24 hours. In Experiment II (physiologic study), rats were subjected to a sublethal HS (40% blood loss), followed by the same treatment with Tub A (treatment group) or DMSO only (vehicle group, n = 5 per group). All animals were sacrificed 6 hours after hemorrhage, and the heart and liver tissues were harvested. Sham animals were not subjected to hemorrhage and treatment (sham group, n = 5 per group). Cardiac mitochondria were isolated to study the pyruvate dehydrogenase (PDH, an essential enzyme for adenosine triphosphate production) activity. Liver tissue lysates were analyzed for markers of apoptosis (cytochrome c, cleaved caspase 3) and inflammation (high-mobility group box 1) by Western blotting. RESULTS Severe HS (55% blood loss) was associated with 75% mortality, which was significantly improved by Tub A treatment (37.5% mortality in 24 hours, p = 0.048). Tub A also significantly enhanced the cardiac PDH activity compared with the vehicle group, while suppressing the hepatic high-mobility group box 1 expression, cytochrome c release, and caspase 3 activation. CONCLUSION Our study has demonstrated for the first time that selective inhibition of HDAC6 can improve survival in a rodent model of HS. The potential mechanisms include enhanced PDH activity, decreased inflammatory drive, and attenuated cellular apoptosis.
AB - BACKGROUND Hemorrhage is the leading cause of preventable trauma-related deaths. We have previously shown that treatment with Tubastatin A (Tub A), a histone deacetylase 6 (HDAC6) inhibitor, can improve survival in a rodent model of septic shock. The aims of the present study were to determine whether selective inhibition of HDAC6 can promote survival in a model of hemorrhagic shock (HS). METHODS In Experiment I (survival study), Wistar-Kyoto rats were subjected to HS (55% volume blood loss), followed by intraperitoneal injection of either Tub A (70 mg/kg) dissolved in dimethyl sulfoxide (DMSO) or DMSO only (vehicle group) (n = 8 per group). Survival was monitored for 24 hours. In Experiment II (physiologic study), rats were subjected to a sublethal HS (40% blood loss), followed by the same treatment with Tub A (treatment group) or DMSO only (vehicle group, n = 5 per group). All animals were sacrificed 6 hours after hemorrhage, and the heart and liver tissues were harvested. Sham animals were not subjected to hemorrhage and treatment (sham group, n = 5 per group). Cardiac mitochondria were isolated to study the pyruvate dehydrogenase (PDH, an essential enzyme for adenosine triphosphate production) activity. Liver tissue lysates were analyzed for markers of apoptosis (cytochrome c, cleaved caspase 3) and inflammation (high-mobility group box 1) by Western blotting. RESULTS Severe HS (55% blood loss) was associated with 75% mortality, which was significantly improved by Tub A treatment (37.5% mortality in 24 hours, p = 0.048). Tub A also significantly enhanced the cardiac PDH activity compared with the vehicle group, while suppressing the hepatic high-mobility group box 1 expression, cytochrome c release, and caspase 3 activation. CONCLUSION Our study has demonstrated for the first time that selective inhibition of HDAC6 can improve survival in a rodent model of HS. The potential mechanisms include enhanced PDH activity, decreased inflammatory drive, and attenuated cellular apoptosis.
KW - Hemorrhagic shock
KW - Tubastatin A
KW - high-mobility group box 1
KW - pyruvate dehydrogenase
KW - rats
UR - http://www.scopus.com/inward/record.url?scp=84948958134&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84948958134&partnerID=8YFLogxK
U2 - 10.1097/TA.0000000000000784
DO - 10.1097/TA.0000000000000784
M3 - Article
C2 - 26680133
AN - SCOPUS:84948958134
SN - 2163-0755
VL - 79
SP - 905
EP - 910
JO - Journal of Trauma and Acute Care Surgery
JF - Journal of Trauma and Acute Care Surgery
IS - 6
ER -