Abstract
It is of interest to extend the reach of CO2 and CO electrochemistry to the synthesis of products with molecular weights higher than the C1 and C2 seen in most prior reports carried out near ambient conditions. Here we present a cascade C1–C2–C4 system that combines electrochemical and thermochemical reactors to produce C4H10 selectively at ambient conditions. In a C2H4 dimerization reactor, we directly upgrade the gas outlet stream of the CO2 or CO electrolyser without purification. We find that CO, which is present alongside C2H4, enhances C2H4 dimerization selectivity to give C4H10 to 95%, a much higher performance than when a CO2 electrolyser is used instead. We achieve an overall two-stage CO-to-C4H10 cascade selectivity of 43%. Mechanistic investigations, complemented by density functional theory calculations reveal that increased CO coverage favours C2H4 dimerization and hydrogenation of *CxHy adsorbates, as well as destabilizes the *C4H9 intermediate, and so promotes the selective production of the target alkane. [Figure not available: see fulltext.]
Original language | English (US) |
---|---|
Pages (from-to) | 310-318 |
Number of pages | 9 |
Journal | Nature Catalysis |
Volume | 6 |
Issue number | 4 |
DOIs | |
State | Published - Apr 2023 |
Funding
All DFT calculations were performed on the Niagara supercomputer of the SciNet HPC Consortium. SciNet is funded by the Canada Foundation for Innovation, the Government of Ontario, Ontario Research Fund Research Excellence Program and the University of Toronto. M.G.L. acknowledges the Basic Science Research Program through the NRF funded by the Ministry of Education (2021R1A6A3A03039988). J.W.Y. acknowledges the Basic Science Research Program through the NRF funded by the Ministry of Education (2021R1A6A3A13046700). All DFT calculations were performed on the Niagara supercomputer of the SciNet HPC Consortium. SciNet is funded by the Canada Foundation for Innovation, the Government of Ontario, Ontario Research Fund Research Excellence Program and the University of Toronto. M.G.L. acknowledges the Basic Science Research Program through the NRF funded by the Ministry of Education (2021R1A6A3A03039988). J.W.Y. acknowledges the Basic Science Research Program through the NRF funded by the Ministry of Education (2021R1A6A3A13046700).
ASJC Scopus subject areas
- Catalysis
- Bioengineering
- Biochemistry
- Process Chemistry and Technology