TY - GEN
T1 - Sensing platforms for structural health monitoring
AU - Zheng, Shijie
AU - Naik, Gautam
AU - Chen, Zhongbi
AU - Zhu, Yinian
AU - Krishnaswamy, Sridhar
PY - 2013/1/1
Y1 - 2013/1/1
N2 - The emerging concept of structural health management relies on extensive onboard diagnostic sensors that can provide near real-time information about the state of a structure so that informed prognostic assessment can be made of the continuing reliability of the structure. In this paper, we will discuss two types of sensing platforms that can provide valuable information about the state of a structure: 1D fiber-optic sensors and 2D thin-film sensors. Both fiber-optic and thin film sensors are easily integrated with structures, and can offer local and/or distributed sensing capabilities. Parameters that can be sensed include: static and dynamic strain, acoustic emission, vibration, corrosion products, moisture ingression etc. We will first describe some recent developments in dynamic strain sensing using optical fiber Bragg grating (FBG) sensors. Applications to detection of acoustic emission and impact will be described. In the area of chemical sensing, we will describe a nanofilm-coated photonic crystal fiber (PCF) long-period grating (LPG) sensing platform. PCF-LPG sensors can be designed to provide greater interaction between the analyte of interest and the light propagating in the fiber, thereby increasing the sensitivity of detection. Applications to humidity sensing will be described. Finally, 2D thin-film sensors on polymer substrates will be discussed. One type of sensor we have been fabricating is based on reduced graphene oxide for large-area chemical sensing applications. It is expected that these 1D and 2D sensing platforms will form part of a suite of sensors that can provide diagnostic structural health information.
AB - The emerging concept of structural health management relies on extensive onboard diagnostic sensors that can provide near real-time information about the state of a structure so that informed prognostic assessment can be made of the continuing reliability of the structure. In this paper, we will discuss two types of sensing platforms that can provide valuable information about the state of a structure: 1D fiber-optic sensors and 2D thin-film sensors. Both fiber-optic and thin film sensors are easily integrated with structures, and can offer local and/or distributed sensing capabilities. Parameters that can be sensed include: static and dynamic strain, acoustic emission, vibration, corrosion products, moisture ingression etc. We will first describe some recent developments in dynamic strain sensing using optical fiber Bragg grating (FBG) sensors. Applications to detection of acoustic emission and impact will be described. In the area of chemical sensing, we will describe a nanofilm-coated photonic crystal fiber (PCF) long-period grating (LPG) sensing platform. PCF-LPG sensors can be designed to provide greater interaction between the analyte of interest and the light propagating in the fiber, thereby increasing the sensitivity of detection. Applications to humidity sensing will be described. Finally, 2D thin-film sensors on polymer substrates will be discussed. One type of sensor we have been fabricating is based on reduced graphene oxide for large-area chemical sensing applications. It is expected that these 1D and 2D sensing platforms will form part of a suite of sensors that can provide diagnostic structural health information.
KW - Fiber Bragg gratings
KW - Fiber-optic sensors
KW - Graphene sensors
KW - Long-period gratings
KW - Photonic crystal fiber
KW - Sensing platform
KW - Structural health monitoring
UR - http://www.scopus.com/inward/record.url?scp=84878708208&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84878708208&partnerID=8YFLogxK
U2 - 10.1117/12.2016792
DO - 10.1117/12.2016792
M3 - Conference contribution
AN - SCOPUS:84878708208
SN - 9780819494757
T3 - Proceedings of SPIE - The International Society for Optical Engineering
BT - Sensors and Smart Structures Technologies for Civil, Mechanical, and Aerospace Systems 2013
PB - SPIE
T2 - 2013 SPIE Conference on Sensors and Smart Structures Technologies for Civil, Mechanical, and Aerospace Systems 2013
Y2 - 10 March 2013 through 14 March 2013
ER -