Sensory cortical re-mapping following upper-limb amputation and subsequent targeted reinnervation: A case report

Jun Yao*, Carolina Carmona, Albert Chen, Todd Kuiken, Julius Dewald

*Corresponding author for this work

Research output: Chapter in Book/Report/Conference proceedingConference contribution

6 Scopus citations

Abstract

This case study demonstrates the ability of sensory cortical representations to remap following arm amputation and subsequent targeted reinnervation (TR). Previous human studies have demonstrated functional plasticity in the primary sensory cortex months or years after amputation of the upper arm, forearm, the hand or a single finger, or after subsequent replantation. Targeted reinnervation, a surgical procedure that re-routes inactive, residual sensorimotor nerves previously responsible for innervating the missing limb to alternative muscle groups and skin areas [1-3], has shown the ability to restore a subject's sensation in the reinnervated skin areas. Whether this new technique causes analogous cortical remapping in a similar timeframe as following hand replantation is still unknown. In order to answer this question, high-density electroencephalography was used to study whether the original sensory cortical territory was regained after TR. Before TR, we found that the cortical response to sensory electrical stimulation in the residual limb showed a diffuse bilateral pattern without a clear focus in either the time or spatial domain, Two years after TR, the sensory map of the reinnervated median nerve shifted back to a close-to-normal, predominantly contralateral pattern. The overall trend of TR-induced sensory remapping is similar to previous reports related to hand replantation but occurs over a slower timeframe. This relatively slower progress after TR as compared to after hand replantation could be because TR is performed months or even years after amputation, while hand replantation was performed immediately after the injury. This work provides new evidence for long term plasticity in the human brain.

Original languageEnglish (US)
Title of host publication33rd Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS 2011
Pages1065-1068
Number of pages4
DOIs
StatePublished - 2011
Event33rd Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS 2011 - Boston, MA, United States
Duration: Aug 30 2011Sep 3 2011

Publication series

NameProceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS
ISSN (Print)1557-170X

Other

Other33rd Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS 2011
Country/TerritoryUnited States
CityBoston, MA
Period8/30/119/3/11

ASJC Scopus subject areas

  • Signal Processing
  • Health Informatics
  • Computer Vision and Pattern Recognition
  • Biomedical Engineering

Fingerprint

Dive into the research topics of 'Sensory cortical re-mapping following upper-limb amputation and subsequent targeted reinnervation: A case report'. Together they form a unique fingerprint.

Cite this