Abstract
The adsorption of CO2 and CH4 in a mixed-ligand metal-organic framework (MOP) Zn2(NDC)2(DPNI) [NDC = 2,6-naphthalenedicarboxylate, DPNI = N,N′-di-(4-pyridyl)-1,4,5,8- naphthalene tetracarboxydiimide] was investigated using volumetric adsorption measurements and grand canonical Monte Carlo (GCMC) simulations. The MOF was synthesized by two routes: first at 80 °C for two days with conventional heating, and second at 120 °C for 1 h using microwave heating. The two as-synthesized samples exhibit very similar powder X-ray diffraction patterns, but the evacuated samples show differences in nitrogen uptake. From the single-component CO2 and CH4 isotherms, mixture adsorption was predicted using the ideal adsorbed solution theory (IAST). The microwave sample shows a selectivity of ∼30 for CO2 over CH4, which is among the highest selectivities reported for this separation. The applicability of IAST to this system was demonstrated by performing GCMC simulations for both single-component and mixture adsorption.
Original language | English (US) |
---|---|
Pages (from-to) | 8592-8598 |
Number of pages | 7 |
Journal | Langmuir |
Volume | 24 |
Issue number | 16 |
DOIs | |
State | Published - Aug 19 2008 |
ASJC Scopus subject areas
- Condensed Matter Physics
- General Materials Science
- Spectroscopy
- Surfaces and Interfaces
- Electrochemistry