Separation of in-vitro-derived megakaryocytes and platelets using spinning-membrane filtration

Alaina C. Schlinker, Katherine Radwanski, Christopher Wegener, Kyungyoon Min, William M Miller*

*Corresponding author for this work

Research output: Contribution to journalArticle

18 Scopus citations

Abstract

In-vitro-derived platelets (PLTs) could potentially overcome problems associated with donated PLTs, including contamination and alloimmunization. Although several groups have produced functional PLTs from stem cells in vitro, the challenge of developing this technology to yield transfusable PLT units has yet to be addressed. The asynchronous nature of in vitro PLT generation makes a single harvest point infeasible for collecting PLTs as soon as they are formed. The current standard of performing manual centrifugations to separate PLTs from nucleated cells at multiple points during culture is labor-intensive, imprecise, and difficult to standardize in accordance with current Good Manufacturing Practices (cGMP). In an effort to develop a more effective method, we adapted a commercially-available, spinning-membrane filtration device to separate in-vitro-derived PLTs from nucleated cells and recover immature megakaryocytes (MKs), the precursor cells to PLTs, for continued culture. Processing a mixture of in-vitro-derived MKs and PLTs on the adapted device yielded a pure PLT population and did not induce PLT pre-activation. MKs recovered from the separation process were unaffected with respect to viability and ploidy, and were able to generate PLTs after reseeding in culture. Being able to efficiently harvest in-vitro-derived PLTs brings this technology one step closer to clinical relevance. Biotechnol. Bioeng. 2015;112: 788-800.

Original languageEnglish (US)
Pages (from-to)788-800
Number of pages13
JournalBiotechnology and Bioengineering
Volume112
Issue number4
DOIs
StatePublished - Apr 1 2015

Keywords

  • Cell separation
  • Cell therapies
  • Megakaryocytes
  • Platelets

ASJC Scopus subject areas

  • Biotechnology
  • Bioengineering
  • Applied Microbiology and Biotechnology

Fingerprint Dive into the research topics of 'Separation of in-vitro-derived megakaryocytes and platelets using spinning-membrane filtration'. Together they form a unique fingerprint.

  • Cite this