Abstract
Herein, ferumoxytol (Fer) capped antiprogrammed cell death-ligand 1 (PD-L1) antibodies (aPD-L1) loaded ultralarge pore mesoporous silica nanoparticles (Fer-ICB-UPMSNPs) are formulated for a sequential magnetic resonance (MR) image guided local immunotherapy after cabazitaxel (Cbz) chemotherapy for the treatment of prostate cancer (PC). The highly porous framework of UPMSNP provides a large capacity for aPD-L1. Fer capping of the pores extends the period of aPD-L1 release and provides MR visibility of the aPD-L1 loaded UPMSNP. As-chosen Cbz chemotherapy prior to the local immunotherapy induces strong immunogenic cell death, dendritic cell maturation, and upregulation of PD-L1 of tumor cells. Finally, tumor growth inhibition of sequential MR image-guided local delivery of Fer-ICB-UPMSNPs and a tumor specific adoptive immune reaction are demonstrated in the pretreated Tramp C1 PC mouse model with Cbz chemotherapy. The tumor suppression is superior to those obtained with systemic ICB treatment after Cbz, only Fer-ICB-UPMSNP or only Cbz. As a proof-of concept, MR image-guided local ICB immunotherapy using Fer-ICB-UPMSNPs after chemotherapy suggests a new perspective of translational local immunotherapy for patients who are treated with standard chemotherapies.
Original language | English (US) |
---|---|
Article number | 1904378 |
Journal | Small |
Volume | 15 |
Issue number | 52 |
DOIs | |
State | Published - Dec 1 2019 |
Funding
This work was supported by grants R01CA218659 and R01EB026207 from the National Cancer Institute and National Institute of Biomedical Imaging and Bioengineering. This work was also supported by the Center for Translational Imaging and Mouse Histology and Phenotyping Laboratory at Northwestern University.
Keywords
- cabazitaxel
- chemo-immunotherapy
- image-guided cancer immunotherapy
- prostate cancer
- ultralarge pore mesoporous silica nanoparticles
ASJC Scopus subject areas
- Engineering (miscellaneous)
- General Chemistry
- General Materials Science
- Biotechnology
- Biomaterials