TY - GEN
T1 - Set cover revisited
T2 - 39th International Colloquium on Automata, Languages, and Programming, ICALP 2012
AU - Saha, Barna
AU - Khuller, Samir
N1 - Funding Information:
Research supported by NSF CCF-0728839, NSF CCF-0937865 and a Google Research Award.
PY - 2012
Y1 - 2012
N2 - In this paper, we consider generalizations of classical covering problems to handle hard capacities. In the hard capacitated set cover problem, additionally each set has a covering capacity which we are not allowed to exceed. In other words, after picking a set, we may cover at most a specified number of elements. Based on the classical results by Wolsey, an O(logn) approximation follows for this problem. Chuzhoy and Naor [FOCS 2002], first studied the special case of unweighted vertex cover with hard capacities and developed an elegant 3 approximation for it based on rounding a natural LP relaxation. This was subsequently improved to a 2 approximation by Gandhi et al. [ICALP 2003]. These results are surprising in light of the fact that for weighted vertex cover with hard capacities, the problem is at least as hard as set cover to approximate. Hence this separates the unweighted problem from the weighted version. The set cover hardness precludes the possibility of a constant factor approximation for the hard-capacitated vertex cover problem on weighted graphs. However, it was not known whether a better than logarithmic approximation is possible on unweighted multigraphs, i.e., graphs that may contain parallel edges. Neither the approach of Chuzhoy and Naor, nor the follow-up work of Gandhi et al. can handle the case of multigraphs. In fact, achieving a constant factor approximation for hard-capacitated vertex cover problem on unweighted multigraphs was posed as an open question in Chuzhoy and Naor's work. In this paper, we resolve this question by providing the first constant factor approximation algorithm for the vertex cover problem with hard capacities on unweighted multigraphs. Previous works cannot handle hypergraphs which is analogous to consider set systems where elements belong to at most f sets. In this paper, we give an O(f) approximation algorithm for this problem. Further, we extend these works to consider partial covers.
AB - In this paper, we consider generalizations of classical covering problems to handle hard capacities. In the hard capacitated set cover problem, additionally each set has a covering capacity which we are not allowed to exceed. In other words, after picking a set, we may cover at most a specified number of elements. Based on the classical results by Wolsey, an O(logn) approximation follows for this problem. Chuzhoy and Naor [FOCS 2002], first studied the special case of unweighted vertex cover with hard capacities and developed an elegant 3 approximation for it based on rounding a natural LP relaxation. This was subsequently improved to a 2 approximation by Gandhi et al. [ICALP 2003]. These results are surprising in light of the fact that for weighted vertex cover with hard capacities, the problem is at least as hard as set cover to approximate. Hence this separates the unweighted problem from the weighted version. The set cover hardness precludes the possibility of a constant factor approximation for the hard-capacitated vertex cover problem on weighted graphs. However, it was not known whether a better than logarithmic approximation is possible on unweighted multigraphs, i.e., graphs that may contain parallel edges. Neither the approach of Chuzhoy and Naor, nor the follow-up work of Gandhi et al. can handle the case of multigraphs. In fact, achieving a constant factor approximation for hard-capacitated vertex cover problem on unweighted multigraphs was posed as an open question in Chuzhoy and Naor's work. In this paper, we resolve this question by providing the first constant factor approximation algorithm for the vertex cover problem with hard capacities on unweighted multigraphs. Previous works cannot handle hypergraphs which is analogous to consider set systems where elements belong to at most f sets. In this paper, we give an O(f) approximation algorithm for this problem. Further, we extend these works to consider partial covers.
UR - http://www.scopus.com/inward/record.url?scp=84883767804&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84883767804&partnerID=8YFLogxK
U2 - 10.1007/978-3-642-31594-7_64
DO - 10.1007/978-3-642-31594-7_64
M3 - Conference contribution
AN - SCOPUS:84883767804
SN - 9783642315930
T3 - Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
SP - 762
EP - 773
BT - Automata, Languages, and Programming - 39th International Colloquium, ICALP 2012, Proceedings
Y2 - 9 July 2012 through 13 July 2012
ER -