TY - JOUR
T1 - Shape memory in self-adapting colloidal crystals
AU - Lee, Seungkyu
AU - Calcaterra, Heather A.
AU - Lee, Sangmin
AU - Hadibrata, Wisnu
AU - Lee, Byeongdu
AU - Oh, Eun Bi
AU - Aydin, Koray
AU - Glotzer, Sharon C.
AU - Mirkin, Chad A.
N1 - Funding Information:
This material is based upon work supported by Air Force Office of Scientific Research FA9550-17-1-0348, FA9550-16-1-0150 and FA9550-18-1-0493. It was also supported as part of the Center for Bio-Inspired Energy Science, an Energy Frontier Research Center (CBES) funded by the US Department of Energy, Office of Science, Basic Energy Sciences award DE-SC0000989. This work made use of the EPIC facility of Northwestern University’s NUANCE Center, which has received support from the SHyNE Resource (NSF grant no. ECCS-2025633), the International Institute for Nanotechnology (IIN) and Northwestern’s MRSEC program (NSF grant no. DMR-1720139); the IIN; the Keck Foundation; and the State of Illinois, through the IIN. This research used resources of the Advanced Photon Source, a US Department of Energy Office of Science User Facility operated for the US Department of Energy Office of Science by Argonne National Laboratory under contract no. DE‐AC02‐06CH11357. X-ray diffraction experiments were carried out at the Dupont–Northwestern–Dow Collaborative Access Team beamline at Sector 5, 12-ID-B, and sector 21 at the Advanced Photon Source at Argonne National Laboratory. H.A.C. acknowledges support by the National Science Foundation Graduate Research Fellowship Program grant (DGE-1842165). K.A. acknowledges partial support from the Office of Naval Research Young Investigator Program (ONR-YIP) Award (no. N00014-17-1-2425). S.L. (UM) and S.C.G. acknowledge support from CBES (grant no. DE-SC0000989). MD simulations were supported in part through computational resources and services supported by Advanced Research Computing at the University of Michigan, Ann Arbor and also used the Extreme Science and Engineering Discovery Environment (XSEDE), which is supported by National Science Foundation grant no. ACI-1548562 and XSEDE award no. DMR 140129.
Publisher Copyright:
© 2022, The Author(s), under exclusive licence to Springer Nature Limited.
PY - 2022/10/27
Y1 - 2022/10/27
N2 - Reconfigurable, mechanically responsive crystalline materials are central components in many sensing, soft robotic, and energy conversion and storage devices1–4. Crystalline materials can readily deform under various stimuli and the extent of recoverable deformation is highly dependent upon bond type1,2,5–10. Indeed, for structures held together via simple electrostatic interactions, minimal deformations are tolerated. By contrast, structures held together by molecular bonds can, in principle, sustain much larger deformations and more easily recover their original configurations. Here we study the deformation properties of well-faceted colloidal crystals engineered with DNA. These crystals are large in size (greater than 100 µm) and have a body-centred cubic (bcc) structure with a high viscoelastic volume fraction (of more than 97%). Therefore, they can be compressed into irregular shapes with wrinkles and creases, and, notably, these deformed crystals, upon rehydration, assume their initial well-formed crystalline morphology and internal nanoscale order within seconds. For most crystals, such compression and deformation would lead to permanent, irreversible damage. The substantial structural changes to the colloidal crystals are accompanied by notable and reversible optical property changes. For example, whereas the original and structurally recovered crystals exhibit near-perfect (over 98%) broadband absorption in the ultraviolet–visible region, the deformed crystals exhibit significantly increased reflection (up to 50% of incident light at certain wavelengths), mainly because of increases in their refractive index and inhomogeneity.
AB - Reconfigurable, mechanically responsive crystalline materials are central components in many sensing, soft robotic, and energy conversion and storage devices1–4. Crystalline materials can readily deform under various stimuli and the extent of recoverable deformation is highly dependent upon bond type1,2,5–10. Indeed, for structures held together via simple electrostatic interactions, minimal deformations are tolerated. By contrast, structures held together by molecular bonds can, in principle, sustain much larger deformations and more easily recover their original configurations. Here we study the deformation properties of well-faceted colloidal crystals engineered with DNA. These crystals are large in size (greater than 100 µm) and have a body-centred cubic (bcc) structure with a high viscoelastic volume fraction (of more than 97%). Therefore, they can be compressed into irregular shapes with wrinkles and creases, and, notably, these deformed crystals, upon rehydration, assume their initial well-formed crystalline morphology and internal nanoscale order within seconds. For most crystals, such compression and deformation would lead to permanent, irreversible damage. The substantial structural changes to the colloidal crystals are accompanied by notable and reversible optical property changes. For example, whereas the original and structurally recovered crystals exhibit near-perfect (over 98%) broadband absorption in the ultraviolet–visible region, the deformed crystals exhibit significantly increased reflection (up to 50% of incident light at certain wavelengths), mainly because of increases in their refractive index and inhomogeneity.
UR - http://www.scopus.com/inward/record.url?scp=85140010379&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85140010379&partnerID=8YFLogxK
U2 - 10.1038/s41586-022-05232-9
DO - 10.1038/s41586-022-05232-9
M3 - Article
C2 - 36253468
AN - SCOPUS:85140010379
SN - 0028-0836
VL - 610
SP - 674
EP - 679
JO - Nature
JF - Nature
IS - 7933
ER -