Shape-selective transport through rectangle-based molecular materials: Thin-film scanning electrochemical microscopy studies

Mary Elizabeth Williams, Kurt D. Benkstein, Christina Abel, Peter H. Dinolfo, Joseph T. Hupp*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

27 Scopus citations

Abstract

Microporous thin films (≈50 to 400 nm) composed of discrete, cavity-containing molecular rectangles have been prepared. The films, which contain both amorphous and microcrystalline domains, display shape-selective transport behavior. They are permeable to small molecules and to molecules that are short or narrow in at least one dimension - for example, elongated planar molecules - but are impermeable to molecules lacking a narrow dimension. However, the shape selectivity is based on transport through intramolecular rather than intermolecular cavities. By using redox-active probe molecules, rates of transport through the rectangle-based material have been extracted from electrochemical measurements. Spatially resolved measurements obtained via scanning electrochemical microscopy have permitted transport through individual microcrystals to be evaluated semiquantitatively. The measurements reveal that transport is roughly two orders of magnitude slower than observed with thin microcrystalline films of molecular squares featuring similar-sized cavities. The differences likely reflect the fact that cavities within the square-based materials, but not the rectangle-based material, align to form simple one-dimensional channels.

Original languageEnglish (US)
Pages (from-to)5171-5177
Number of pages7
JournalProceedings of the National Academy of Sciences of the United States of America
Volume99
Issue number8
DOIs
StatePublished - Apr 16 2002

ASJC Scopus subject areas

  • General

Fingerprint

Dive into the research topics of 'Shape-selective transport through rectangle-based molecular materials: Thin-film scanning electrochemical microscopy studies'. Together they form a unique fingerprint.

Cite this