SHARP UPPER BOUNDS for FRACTIONAL MOMENTS of the RIEMANN ZETA FUNCTION

Winston Heap*, Maksym Radziwiłł, K. Soundararajan

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

18 Scopus citations

Abstract

We establish sharp upper bounds for the $2k$th moment of the Riemann zeta function on the critical line, for all real $0\leqslant k\leqslant 2$. This improves on earlier work of Ramachandra, Heath-Brown and Bettin-Chandee-Radziwiłł.

Original languageEnglish (US)
Pages (from-to)1387-1396
Number of pages10
JournalQuarterly Journal of Mathematics
Volume70
Issue number4
DOIs
StatePublished - Dec 1 2019

Funding

ASJC Scopus subject areas

  • General Mathematics

Fingerprint

Dive into the research topics of 'SHARP UPPER BOUNDS for FRACTIONAL MOMENTS of the RIEMANN ZETA FUNCTION'. Together they form a unique fingerprint.

Cite this