Abstract
We establish sharp upper bounds for the $2k$th moment of the Riemann zeta function on the critical line, for all real $0\leqslant k\leqslant 2$. This improves on earlier work of Ramachandra, Heath-Brown and Bettin-Chandee-Radziwiłł.
Original language | English (US) |
---|---|
Pages (from-to) | 1387-1396 |
Number of pages | 10 |
Journal | Quarterly Journal of Mathematics |
Volume | 70 |
Issue number | 4 |
DOIs | |
State | Published - Dec 1 2019 |
Funding
ASJC Scopus subject areas
- General Mathematics