Abstract
2H-TaS2 undergoes a charge density wave (CDW) transition at TCDW∼75 K, however key questions regarding the onset of CDW order remain under debate. In this study, we explore the CDW transition through a combination of temperature and excitation-dependent Raman spectroscopy, angle resolved photoemission spectroscopy (ARPES), and density functional theory (DFT). Below TCDW we identify two CDW amplitude modes that redshift and broaden with increasing temperature and one zone-folded mode that disappears above TCDW. Above TCDW, we observe a strong two-phonon mode that softens substantially upon cooling, which suggests the presence of substantial lattice distortions at temperatures as high as 250 K. This correlates with the ARPES observation of the persistence of a CDW energy gap above TCDW and finite-temperature DFT calculations of the phonon band structure that indicate an instability occurring well above the CDW transition temperature. DFT also provides the atomic displacements of the CDW amplitude modes and reproduces their temperature dependence. From these observations we suggest that short range CDW order exists well above TCDW, which poses new questions regarding the interplay between electronic structure and vibrational modes in layered CDW materials.
Original language | English (US) |
---|---|
Article number | 245144 |
Journal | Physical Review B |
Volume | 99 |
Issue number | 24 |
DOIs | |
State | Published - Jun 25 2019 |
ASJC Scopus subject areas
- Electronic, Optical and Magnetic Materials
- Condensed Matter Physics