Shuttling dynamics in an acid-base-switchable [2]rotaxane

Sandrine Garaudée, Serena Silvi, Margherita Venturi, Alberto Credi*, Amar H. Flood, J. Fraser Stoddart

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

72 Scopus citations


Molecular shuttles are an intriguing class of rotaxanes which constitute prototypes of mechanical molecular machines and motors. By using stopped-flow spectroscopic techniques in acetonitrile solution, we investigated the kinetics of the shuttling process of a dibenzo[24]crown-8 ether (DB24C8) macrocycle between two recognition sites or "stations" - a secondary ammonium (-NH2+-)/amine (-NH-) center and a 4,4′-bipyridinium (bipy2+) unit - located on the dumbbell component in a [2]rotaxane. The affinity for DB24C8 decreases in the order -NH2 +->bipy2+> -NH-, Hence, shuttling of the DB24C8 macrocycle can be obtained by deprotonation and reprotonation of the ammonium station, reactions which are easily accomplished by addition of base and acid to the solution. The rate constants were measured as a function of temperature in the range 277-303 K, and activation parameters for the shuttling motion in both directions were determined. The effect of different counterions on the shuttling rates was examined. The shuttling from the -NH2+- to the bipy2+ station, induced by the deprotonation of the ammonium site, is considerably slower than the shuttling in the reverse direction, which is, in turn, activated by reprotonation of the amine site. The results show that the dynamics of the shuttling processes are related to the change in the intercomponent interactions and structural features of the two mutually interlocked molecular components. Our observations also indicate that the counterions of the cationic rotaxane constitute an important contribution to the activation barrier for shuttling.

Original languageEnglish (US)
Pages (from-to)2145-2152
Number of pages8
Issue number10
StatePublished - Oct 2005


  • Molecular devices
  • Molecular dynamics
  • Photochemistry
  • Rotaxanes
  • Supramolecular chemistry

ASJC Scopus subject areas

  • Atomic and Molecular Physics, and Optics
  • Physical and Theoretical Chemistry

Fingerprint Dive into the research topics of 'Shuttling dynamics in an acid-base-switchable [2]rotaxane'. Together they form a unique fingerprint.

Cite this