Abstract
Defining processes that are synthetic lethal with p53 mutations in cancer cells may reveal possible therapeutic strategies. In this study, we report the development of a signal-oriented computational framework for cancer pathway discovery in this context. We applied our bipartite graph-based functional module discovery algorithm to identify transcriptomic modules abnormally expressed in multiple tumors, such that the genes in a module were likely regulated by a common, perturbed signal. For each transcriptomic module, we applied our weighted k-path merge algorithm to search for a set of somatic genome alterations (SGA) that likely perturbed the signal, that is, the candidate members of the pathway that regulate the transcriptomic module. Computational evaluations indicated that our methods-identified pathways were perturbed by SGA. In particular, our analyses revealed that SGA affecting TP53, PTK2, YWHAZ,andMED1 perturbed a set of signals that promote cell proliferation, anchor-free colony formation, and epithelial-mesenchymal transition (EMT). These proteins formed a signaling complex that mediates these oncogenic processes in a coordinated fashion. Disruption of this signaling complex by knocking down PTK2, YWHAZ, or MED1 attenuated and reversed oncogenic phenotypes caused by mutant p53 in a synthetic lethal manner. This signal-oriented framework for searching pathways and therapeutic targets is applicable to all cancer types, thus potentially impacting precision medicine in cancer.
Original language | English (US) |
---|---|
Pages (from-to) | 6785-6794 |
Number of pages | 10 |
Journal | Cancer Research |
Volume | 76 |
Issue number | 23 |
DOIs | |
State | Published - Dec 1 2016 |
Funding
The authors would like to thank Drs. Andrew Stern, Steffi Osterreich, Robert Edwards, Xin Huang for discussions and Michelle Kienholz for assistance editing the article, and Dr. Nancy Davidson's generous contribution of the breast cancer cell lines from the NCI-ATCC ICBP program. The research was partially supported by the following NIH grants: R01LM 010144, R01LM 011155, R01LM012011, U54HG008540, R01CA154695, R01CA094118, K99LM011673, and P01CA97132. The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked advertisement in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.
ASJC Scopus subject areas
- Oncology
- Cancer Research