Sildenafil attenuates vaso-obliteration and neovascularization in a mouse model of retinopathy of prematurity

Amani A. Fawzi, Jonathan C. Chou, Gina A. Kim, Stuart D. Rollins, Joann M. Taylor, Kathryn N. Farrow

Research output: Contribution to journalArticlepeer-review

7 Scopus citations


PURPOSE. We sought to determine the effect of sildenafil on retinal vascular changes in a mouse model of oxygen-induced retinopathy (OIR). METHODS. Vascular defects in OIR mice were quantified by measuring vaso-obliteration at postnatal days 12 and 17 (P12 and P17) and neovascularization at P17 to compare sildenafiltreated to dextrose-treated OIR mice. Retinal HIF1α protein expression was quantified by Western blotting and normalized to that of β-actin. Right ventricular hypertrophy was measured by Fulton's index as a surrogate for hyperoxia-induced pulmonary hypertension. RESULTS. At P12, OIR mice treated with sildenafil demonstrated a 24% reduction in vasoobliteration (P < 0.05), whereas at P17, treated animals showed a 50% reduction in neovascularization (P < 0.05) compared to dextrose-treated controls. Sildenafil-treated OIR mice had stabilization of retinal HIF1α at P12, immediately after hyperoxia. At P17, sildenafiltreated OIR mice had decreased HIF1α relative to untreated mice. OIR mice developed right ventricle hypertrophy that was significant compared to that in room air controls, which was abrogated by sildenafil. CONCLUSIONS. Sildenafil treatment significantly decreased retinal vaso-obliteration and neovascularization in a mouse OIR model. These effects are likely due to sildenafil-induced HIF1α stabilization during hyperoxia exposure. Furthermore, we confirm disease overlap by showing that OIR mice also develop hyperoxia-induced right ventricular hypertrophy, which is prevented by sildenafil. This study is a first step toward delineating a potential therapeutic role for sildenafil in OIR and further suggests that there may be common pathophysiologic mechanisms underlying hyperoxia-induced retinal and pulmonary vascular disease.

Original languageEnglish (US)
Pages (from-to)1493-1501
Number of pages9
JournalInvestigative Ophthalmology and Visual Science
Issue number3
StatePublished - Mar 10 2014


  • Mouse
  • Neovascularization
  • Retinopathy of prematurity
  • Sildenafil
  • Vaso-obliteration

ASJC Scopus subject areas

  • Ophthalmology
  • Sensory Systems
  • Cellular and Molecular Neuroscience

Fingerprint Dive into the research topics of 'Sildenafil attenuates vaso-obliteration and neovascularization in a mouse model of retinopathy of prematurity'. Together they form a unique fingerprint.

Cite this