TY - JOUR
T1 - SIMULATIONS of the SYMBIOTIC RECURRENT NOVA V407 CYG. I. ACCRETION and SHOCK EVOLUTIONS
AU - Pan, Kuo Chuan
AU - Ricker, Paul M.
AU - Taam, Ronald E.
N1 - Publisher Copyright:
© 2015. The American Astronomical Society. All rights reserved.
PY - 2015/6/10
Y1 - 2015/6/10
N2 - The shock interaction and evolution of nova ejecta with wind from a red giant (RG) star in a symbiotic binary system are investigated via three-dimensional hydrodynamics simulations. We specifically model the 2010 March outburst of the symbiotic recurrent nova V407 Cygni from its quiescent phase to its eruption phase. The circumstellar density enhancement due to wind-white-dwarf interaction is studied in detail. It is found that the density-enhancement efficiency depends on the ratio of the orbital speed to the RG wind speed. Unlike another recurrent nova, RS Ophiuchi, we do not observe a strong disk-like density enhancement, but instead observe an aspherical density distribution with ∼20% higher density in the equatorial plane than at the poles. To model the 2010 outburst, we consider several physical parameters, including the RG mass-loss rate, nova eruption energy, and ejecta mass. A detailed study of the shock interaction and evolution reveals that the interaction of shocks with the RG wind generates strong Rayleigh-Taylor instabilities. In addition, the presence of the companion and circumstellar density enhancement greatly alter the shock evolution during the nova phase. Depending on the model, the ejecta speed after sweeping out most of the circumstellar medium decreases to ∼100-300 km s-1, which is consistent with the observed extended redward emission in [N ii] lines in 2011 April.
AB - The shock interaction and evolution of nova ejecta with wind from a red giant (RG) star in a symbiotic binary system are investigated via three-dimensional hydrodynamics simulations. We specifically model the 2010 March outburst of the symbiotic recurrent nova V407 Cygni from its quiescent phase to its eruption phase. The circumstellar density enhancement due to wind-white-dwarf interaction is studied in detail. It is found that the density-enhancement efficiency depends on the ratio of the orbital speed to the RG wind speed. Unlike another recurrent nova, RS Ophiuchi, we do not observe a strong disk-like density enhancement, but instead observe an aspherical density distribution with ∼20% higher density in the equatorial plane than at the poles. To model the 2010 outburst, we consider several physical parameters, including the RG mass-loss rate, nova eruption energy, and ejecta mass. A detailed study of the shock interaction and evolution reveals that the interaction of shocks with the RG wind generates strong Rayleigh-Taylor instabilities. In addition, the presence of the companion and circumstellar density enhancement greatly alter the shock evolution during the nova phase. Depending on the model, the ejecta speed after sweeping out most of the circumstellar medium decreases to ∼100-300 km s-1, which is consistent with the observed extended redward emission in [N ii] lines in 2011 April.
KW - hydrodynamics
KW - methods: numerical
KW - stars: individual (V407 Cygni)
KW - supernovae: general Supporting material: animation
UR - http://www.scopus.com/inward/record.url?scp=84934977697&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84934977697&partnerID=8YFLogxK
U2 - 10.1088/0004-637X/806/1/27
DO - 10.1088/0004-637X/806/1/27
M3 - Article
AN - SCOPUS:84934977697
SN - 0004-637X
VL - 806
JO - Astrophysical Journal
JF - Astrophysical Journal
IS - 1
M1 - 27
ER -