Abstract
The specificity of adaptation of vestibuloocular reflex direction was examined by exposing cats to combined pitch vestibular rotation and horizontal optokinetic motion at 0.25 Hz, while alternating body position between lying on the left side and lying on the right. The direction of optokinetic motion relative to head motion was reversed when the cat's body posture was changed so that, for example, if head upward rotation was coupled to leftward visual world motion when the cat was lying on its left side, then head upward rotation was coupled to rightward visual world motion when the cat was on its right side. Body position and optokinetic motion direction were changed every 10 min for a total of 2 h of adaptation on each side. Horizontal and vertical electrooculographic recordings were made during pitch rotations in darkness before and after adaptation. Saccades were removed from the records and vestibulo-ocular reflex gain was measured in the direction of optokinetic motion. In every case, the adaptation procedure produced a directional change in the vestibulo-ocular reflex specific to the posture during measurement and appropriate to reduce the retinal image motion caused by the combined vestibular and optokinetic stimuli. That is, adaptive horizontal eye movements measured on the two sides were in opposite directions for the same direction of head motion. This specificity suggests that adaptation of vestibulo-ocular reflex direction involves specific neural pathways that are controlled by body orientation signals which most likely arise from the otolith organs.
Original language | English (US) |
---|---|
Pages (from-to) | 220-224 |
Number of pages | 5 |
Journal | Experimental Brain Research |
Volume | 69 |
Issue number | 1 |
DOIs | |
State | Published - Dec 1987 |
Keywords
- Adaptation
- Cats
- Gravity sense
- Otolith organs
- Vestibulo-ocular reflex
ASJC Scopus subject areas
- Neuroscience(all)