TY - JOUR
T1 - Single-cell transcriptomic analysis of human lung provides insights into the pathobiology of pulmonary fibrosis
AU - Reyfman, Paul Andrew
AU - Walter, James McCauley
AU - Joshi, Nikita
AU - Anekalla, Kishore R.
AU - McQuattie-Pimentel, Alexandra C.
AU - Chiu, Stephen
AU - Fernandez, Ramiro
AU - Akbarpour, Mahzad
AU - Chen, Ching I.
AU - Ren, Ziyou
AU - Verma, Rohan
AU - Abdala-Valencia, Hiam
AU - Nam, Kiwon
AU - Chi, Monica
AU - Han, Seung Hye
AU - Gonzalez-Gonzalez, Francisco J.
AU - Soberanes, Saul
AU - Watanabe, Satoshi
AU - Williams, Kinola J.N.
AU - Flozak, Annette S.
AU - Nicholson, Trevor T.
AU - Morgan, Vince K.
AU - Winter, Deborah Rachelle
AU - Hinchcliff, Monique
AU - Hrusch, Cara L.
AU - Guzy, Robert D.
AU - Bonham, Catherine A.
AU - Sperling, Anne I.
AU - Bag, Remzi
AU - Hamanaka, Robert B.
AU - Mutlu, Gökhan M.
AU - Yeldandi, Anjana V
AU - Marshall, Stacy A.
AU - Shilatifard, Ali
AU - Amaral, Luis A N
AU - Perlman, Harris R
AU - Sznajder, Jacob I
AU - Christine Argento, A.
AU - Gillespie, Colin Thomas
AU - Dematte, Jane
AU - Jain, Manu
AU - Singer, Benjamin
AU - Ridge, Karen M
AU - Lam, Anna P
AU - Bharat, Ankit
AU - Bhorade, Sangeeta Maruti
AU - Gottardi, Cara
AU - Budinger, GR Scott
AU - Misharin, Alexander
PY - 2019/6/15
Y1 - 2019/6/15
N2 - Rationale: The contributions of diverse cell populations in the human lung to pulmonary fibrosis pathogenesis are poorly understood. Single-cell RNA sequencing can reveal changes within individual cell populations during pulmonary fibrosis that are important for disease pathogenesis. Objectives: To determine whether single-cell RNA sequencing can reveal disease-related heterogeneity within alveolar macrophages, epithelial cells, or other cell types in lung tissue from subjects with pulmonary fibrosis compared with control subjects. Methods: We performed single-cell RNA sequencing on lung tissue obtained from eight transplant donors and eight recipients with pulmonary fibrosis and on one bronchoscopic cryobiospy sample from a patient with idiopathic pulmonary fibrosis. We validated these data using in situ RNA hybridization, immunohistochemistry, and bulk RNA-sequencing on flow-sorted cells from 22 additional subjects. Measurements and Main Results: We identified a distinct, nove population of profibrotic alveolar macrophages exclusively in patients with fibrosis. Within epithelial cells, the expression of genes involved in Wnt secretion and response was restricted to nonoverlapping cells. We identified rare cell populations including airway stem cells and senescent cells emerging during pulmonary fibrosis. We developed a web-based tool to explore these data. Conclusions: We generated a single-cell atlas of pulmonary fibrosis. Using this atlas, we demonstrated heterogeneity within alveolar macrophages and epithelial cells from subjects with pulmonary fibrosis. These results support the feasibility of discovery-based approaches using next-generation sequencing technologies to identify signaling pathways for targeting in the development of personalized therapies for patients with pulmonary fibrosis.
AB - Rationale: The contributions of diverse cell populations in the human lung to pulmonary fibrosis pathogenesis are poorly understood. Single-cell RNA sequencing can reveal changes within individual cell populations during pulmonary fibrosis that are important for disease pathogenesis. Objectives: To determine whether single-cell RNA sequencing can reveal disease-related heterogeneity within alveolar macrophages, epithelial cells, or other cell types in lung tissue from subjects with pulmonary fibrosis compared with control subjects. Methods: We performed single-cell RNA sequencing on lung tissue obtained from eight transplant donors and eight recipients with pulmonary fibrosis and on one bronchoscopic cryobiospy sample from a patient with idiopathic pulmonary fibrosis. We validated these data using in situ RNA hybridization, immunohistochemistry, and bulk RNA-sequencing on flow-sorted cells from 22 additional subjects. Measurements and Main Results: We identified a distinct, nove population of profibrotic alveolar macrophages exclusively in patients with fibrosis. Within epithelial cells, the expression of genes involved in Wnt secretion and response was restricted to nonoverlapping cells. We identified rare cell populations including airway stem cells and senescent cells emerging during pulmonary fibrosis. We developed a web-based tool to explore these data. Conclusions: We generated a single-cell atlas of pulmonary fibrosis. Using this atlas, we demonstrated heterogeneity within alveolar macrophages and epithelial cells from subjects with pulmonary fibrosis. These results support the feasibility of discovery-based approaches using next-generation sequencing technologies to identify signaling pathways for targeting in the development of personalized therapies for patients with pulmonary fibrosis.
KW - Alveolar macrophages
KW - Alveolar type II cells
KW - Pulmonary fibrosis
KW - RNA sequencing
UR - http://www.scopus.com/inward/record.url?scp=85063607222&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85063607222&partnerID=8YFLogxK
U2 - 10.1164/rccm.201712-2410OC
DO - 10.1164/rccm.201712-2410OC
M3 - Article
C2 - 30554520
SN - 1073-449X
VL - 199
SP - 1517
EP - 1536
JO - American Review of Respiratory Disease
JF - American Review of Respiratory Disease
IS - 12
ER -