Single-cell transcriptomics of staged oocytes and somatic cells reveal novel regulators of follicle activation

Yu Ying Chen, Daniela D. Russo, Riley S. Drake, Francesca E. Duncan, Alex K. Shalek, Brittany A. Goods, Teresa K Woodruff

Research output: Contribution to journalArticlepeer-review

10 Scopus citations


In brief: Proper development of ovarian follicles, comprised of an oocyte and surrounding somatic cells, is essential to support female fertility and endocrine health. Here, we describe a method to isolate single oocytes and somatic cells from the earliest stage follicles, called primordial follicles, and we characterize signals that drive their activation.Abstract:Primordial follicles are the first class of follicles formed in the mammalian ovary and are comprised of an oocyte surrounded by a layer of squamous pre-granulosa cells. This developmental class remains in a non-growing state until individual follicles activate to initiate folliculogenesis. What regulates the timing of follicle activation and the upstream signals that govern these processes are major unanswered questions in ovarian biology. This is partly due to the paucity of data on staged follicle cells since isolating and manipulating individual oocytes and somatic cells from early follicle stages are challenging. To date, most studies on isolated primordial follicles have been conducted on cells collected from animal-age- or oocyte size-specific samples, which encompass multiple follicular stages. Here, we report a method for collecting primordial follicles and their associated oocytes and somatic cells from neonatal murine ovaries using liberase, DNase I, and Accutase. This methodology allows for the identification and collection of follicles immediately post-activation enabling unprecedented interrogation of the primordial-to-primary follicle transition. Molecular profiling by single-cell RNA sequencing revealed that processes including organelle disassembly and cadherin binding were enriched in oocytes and somatic cells as they transitioned from primordial to the primary follicle stage. Furthermore, targets including WNT4, TGFB1, FOXO3, and a network of transcription factors were identified in the transitioning oocytes and somatic cells as potential upstream regulators that collectively may drive follicle activation. Taken together, we have developed a more precise characterization and selection method for studying staged-follicle cells, revealing several novel regulators of early folliculogenesis.

Original languageEnglish (US)
Pages (from-to)55-70
Number of pages16
Issue number2
StatePublished - Aug 2022

ASJC Scopus subject areas

  • Endocrinology
  • Obstetrics and Gynecology
  • Cell Biology
  • Reproductive Medicine
  • Embryology


Dive into the research topics of 'Single-cell transcriptomics of staged oocytes and somatic cells reveal novel regulators of follicle activation'. Together they form a unique fingerprint.

Cite this