Single-molecule tip-enhanced Raman spectroscopy

Matthew D. Sonntag, Jordan M. Klingsporn, Luis K. Garibay, John M. Roberts, Jon A. Dieringer, Tamar Seideman, Karl A. Scheidt, Lasse Jensen, George C. Schatz, Richard P. Van Duyne*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

227 Scopus citations

Abstract

An existence proof for single-molecule tip-enhanced Raman spectroscopy (SMTERS) is given using the frequency domain approach involving the two isotopologues of Rhodamine 6G (R6G) that were previously employed for single-molecule surface-enhanced Raman spectroscopy (SMSERS). A combination of experimental and theoretical studies provides a detailed view of the isotopic response of R6G-d 0 and R6G-d 4 in the 600 - 800 cm -1 region. The single-molecule nature of the TERS experiment is confirmed through two lines of evidence. First, the vibrational signature of only one isotopologue at a time was observed from multiple TER spectra. Second, the spectral wandering of the 610 cm -1 mode of R6G-d 0 was less than ±4 cm -1, which in turn is less than the 10 cm -1 isotopic shift so that no confusion in assignment resulted. As a consequence, the total TERS enhancement factor can now be accurately established as EF TERS = 1.0 × 10 13 because only one molecule at a time is measured. Furthermore, EF TERS can be partitioned into an electromagnetic contribution of 10 6 and a molecule-localized resonance Raman contribution of 10 7.

Original languageEnglish (US)
Pages (from-to)478-483
Number of pages6
JournalJournal of Physical Chemistry C
Volume116
Issue number1
DOIs
StatePublished - Jan 12 2012

Funding

ASJC Scopus subject areas

  • Electronic, Optical and Magnetic Materials
  • General Energy
  • Physical and Theoretical Chemistry
  • Surfaces, Coatings and Films

Fingerprint

Dive into the research topics of 'Single-molecule tip-enhanced Raman spectroscopy'. Together they form a unique fingerprint.

Cite this