Sites of interaction between kinase-related protein and smooth muscle myosin

Debra L. Silver, Alexander V. Vorotnikov, D. Martin Watterson, Vladimir P. Shirinsky, James R. Sellers*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

51 Scopus citations


Kinase-related protein, also known as KRP or telokin, is an independently expressed protein product derived from a gene within the gene for myosin light chain kinase (MLCK). KRP binds to unphosphorylated smooth muscle myosin filaments and stabilizes them against ATP-induced depolymerization in vitro. KRP competes with MLCK for binding to myosin, suggesting that both proteins bind to myosin by the KRP domain (Shirinsky, V. P., Vorotnikov, A. V., Birukov, K. G., Nanaev, A. K., Collinge, M., Lukas, T. J., Sellers, J. R., and Watterson, D. M. (1993) J. Biol. Chem. 268, 16578- 16583). In this study, we investigated which regions of myosin and KRP interact in vitro. Using cosedimentation assays, we determined that KRP binds to unphosphorylated myosin with a stoichiometry of 1 mol of KRP/1 mol of myosin and an affinity of 5.5 μm. KRP slows the rate of proteolytic cleavage of the head-tail junction of heavy meromyosin by papain and chymotrypsin, suggesting it is binding to this region of myosin. In addition, competition experiments, using soluble headless fragments of nonmuscle myosin, confirmed that KRP interacts with the regulatory light chain binding region of myosin. The regions important for KRP's binding to myosin were investigated using bacterially expressed KRP truncation mutants. We determined that the acid- rich sequence between Gly138 and Asp151 of KRP is required for high affinity myosin binding, and that the amino terminus and 2b-barrel regions weakly interact with myosin. All KRP truncations, at concentrations comparable to their K(D) values, exhibited some stabilization of myosin filaments against ATP depolymerization in vitro, suggesting that KRP's ability to stabilize myosin filaments is commensurate with its myosin binding affinity. KRP weakened the K(m) but not the V(max) of phosphorylation of myosin by MLCK, demonstrating that bound KRP does not prevent MLCK from activating myosin.

Original languageEnglish (US)
Pages (from-to)25353-25359
Number of pages7
JournalJournal of Biological Chemistry
Issue number40
StatePublished - Oct 3 1997

ASJC Scopus subject areas

  • Biochemistry
  • Molecular Biology
  • Cell Biology

Fingerprint Dive into the research topics of 'Sites of interaction between kinase-related protein and smooth muscle myosin'. Together they form a unique fingerprint.

Cite this