Abstract
In this paper, we present the design, control, and testing of a 6 degrees-of-freedom magnetically-levitated system with nanometer-precision positioning capability and several-hundred-micrometer travel range. This system levitates a triangular single-moving-part platen, and produces the six-axis motion with six single-axis linear actuators. One of the prominent advantages of this magnetic levitation (maglev) system is that there is no physical contact between the moving part and the stator, which eliminates friction, wear, backlash, and hysteresis. As compared to other traditional devices, the present system is very compact with the minimum number of actuators for six-axis motion generation. The maglev device presented herein shows the position resolution better than 5 nm with 2-nm rms position noise, and is capable of a velocity of 0.5 m/s and an acceleration of 30 m/s2. The nominal power consumption is only 15 mW by each horizontal actuator, and 320 mW by each vertical actuator. The actuators are sized to be able to orient and position a maximum payload of 1 kg. The key application of this maglev device is the manipulation at nanoscale for microassemblies and manufacture of their parts. Other potential applications are stereolithography, vibration-free delicate instrumentation, and microscale rapid prototyping.
Original language | English (US) |
---|---|
Pages (from-to) | 384-391 |
Number of pages | 8 |
Journal | IEEE/ASME Transactions on Mechatronics |
Volume | 9 |
Issue number | 2 |
DOIs | |
State | Published - Jun 2004 |
Funding
Manuscript received April 25, 2003; revised July 29, 2003. This work was supported by the National Science Foundation under Grant CMS-0116642. S. Verma is with the Department of Mechanical Engineering, Texas A&M University, College Station, TX 77840 USA (e-mail: [email protected]). W. Kim is with the Department of Mechanical Engineering, Texas A&M University, College Station, TX 77843-3123 USA (e-mail: [email protected]). J. Gu was with the Mechanical Engineering Department, Texas A&M University, College Station, TX 77840 USA. He is now with the Department of Electrical Engineering, University of Minnesota, Minneapolis, MN 55455 USA (e-mail: [email protected]). Digital Object Identifier 10.1109/TMECH.2004.828648
ASJC Scopus subject areas
- Control and Systems Engineering
- Computer Science Applications
- Electrical and Electronic Engineering