Abstract
Template-directed protocols provide a routine approach to the synthesis of mechanically interlocked molecules (MIMs), in which the mechanical bonds are stabilized by a wide variety of weak interactions. In this Article, we describe a strategy for the preparation of neutral [2]catenanes with sliding interlocked electron-rich rings, starting from two degenerate donor-acceptor [2]catenanes, consisting of a tetracationic cyclobis(paraquat-p-phenylene) cyclophane (CBPQT4+) and crown ethers containing either (i) hydroquinone (HQ) or (ii) 1,5-dioxynaphthalene (DNP) recognition units and carrying out four-electron reductions of the cyclophane components to their neutral forms. The donor-acceptor interactions between the CBPQT4+ ring and both HQ and DNP units present in the crown ethers that stabilize the [2]catenanes are weakened upon reduction of the cyclophane components to their radical cationic states and are all but absent in their fully reduced states. Characterization in solution performed by UV-vis, EPR, and NMR spectroscopic probes reveals that changes in the redox properties of the [2]catenanes result in a substantial decrease of the energy barriers for the circumrotation and pirouetting motions of the interlocked rings, which glide freely through one another in the neutral states. The solid-state structures of the fully reduced catenanes reveal profound changes in the relative dispositions of the interlocked rings, with the glycol chains of the crown ethers residing in the cavities of the neutral CBPQT0 rings. Quantum mechanical investigations of the energy levels associated with the four different oxidation states of the catenanes support this interpretation. Catenanes and rotaxanes with sliding rings are expected to display unique properties.
Original language | English (US) |
---|---|
Pages (from-to) | 10214-10225 |
Number of pages | 12 |
Journal | Journal of the American Chemical Society |
Volume | 138 |
Issue number | 32 |
DOIs | |
State | Published - Aug 17 2016 |
Funding
This work was also supported by the U.S. National Science Foundation (NSF) under grant no. CHE-1565925 (M.R.W.). W.A.G. gratefully acknowledges support (EFRI-1332411) from the NSF. Y.W. thanks the Fulbright Scholar Program for a Research Fellowship and gratefully acknowledges support from a Ryan Fellowship awarded by the NU International Institute for Nanotechnology (IIN).
ASJC Scopus subject areas
- Catalysis
- General Chemistry
- Biochemistry
- Colloid and Surface Chemistry
Fingerprint
Dive into the research topics of 'Sliding-Ring Catenanes'. Together they form a unique fingerprint.Datasets
-
CCDC 1479752: Experimental Crystal Structure Determination
Fernando, I. R. (Creator), Frasconi, M. (Creator), Wu, Y. (Creator), Liu, W.-G. (Creator), Wasielewski, M. R. (Creator), Goddard, W. A. (Contributor) & Stoddart, J. F. (Creator), Cambridge Crystallographic Data Centre, 2016
DOI: 10.5517/ccdc.csd.cc1lnsyz, http://www.ccdc.cam.ac.uk/services/structure_request?id=doi:10.5517/ccdc.csd.cc1lnsyz&sid=DataCite
Dataset
-
CCDC 1479750: Experimental Crystal Structure Determination
Fernando, I. R. (Creator), Frasconi, M. (Creator), Wu, Y. (Creator), Liu, W.-G. (Creator), Wasielewski, M. R. (Creator), Goddard, W. A. (Contributor) & Stoddart, J. F. (Creator), Cambridge Crystallographic Data Centre, 2016
DOI: 10.5517/ccdc.csd.cc1lnswx, http://www.ccdc.cam.ac.uk/services/structure_request?id=doi:10.5517/ccdc.csd.cc1lnswx&sid=DataCite
Dataset
-
CCDC 1479751: Experimental Crystal Structure Determination
Fernando, I. R. (Creator), Frasconi, M. (Creator), Wu, Y. (Creator), Liu, W.-G. (Creator), Wasielewski, M. R. (Creator), Goddard, W. A. (Contributor) & Stoddart, J. F. (Creator), Cambridge Crystallographic Data Centre, 2016
DOI: 10.5517/ccdc.csd.cc1lnsxy, http://www.ccdc.cam.ac.uk/services/structure_request?id=doi:10.5517/ccdc.csd.cc1lnsxy&sid=DataCite
Dataset