Abstract
Recent experiments on unzipping of RNA helix-loop structures by force have shown that ≈40-base molecules can undergo kinetic transitions between two well-defined "open" and "closed" states, on a timescale ≈1 sec [Liphardt et al., Science 297, 733-737 (2001)]. Using a simple dynamical model, we show that these phenomena result from the slow kinetics of crossing large free energy barriers which separate the open and closed conformations. The dependence of barriers on sequence along the helix, and on the size of the loop(s) is analyzed. Some DNA and RNA sequences that could show dynamics on different time scales, or three(or more)-state unzipping, are proposed. Our dynamical model is also applied to the unzipping of long (kilo-basepair) DNA molecules at constant force.
Original language | English (US) |
---|---|
Pages (from-to) | 153-161 |
Number of pages | 9 |
Journal | European Physical Journal E |
Volume | 10 |
Issue number | 2 |
DOIs | |
State | Published - Feb 2003 |
ASJC Scopus subject areas
- Chemistry(all)
- Materials Science(all)
- Biophysics
- Biotechnology
- Surfaces and Interfaces