Small increases in pH enhance retroviral vector transduction efficiency of NIH-3T3 cells

Tor W. Jensen, Yong Chen, William M. Miller*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

7 Scopus citations

Abstract

Increases in pH between 7.1 and 7.7 increase the efficiency of polybrene (Pb)- and protamine sulfate (PS)-aided retroviral transduction of NIH-3T3 cells in a serum-lot-dependent manner. The increase in Pb-aided transduction efficiency at pH 7.7, relative to the value at pH 7.33, ranged from 13% to 49% for three serum lots. For a constant Moloney murine leukemia virus (MMLV) vector dilution at pH 7.33, three different serum lots resulted in absolute transduction efficiencies ranging from 29% to 53% using Pb. At the same vector dilution, PS-aided transduction was less effective on an absolute basis than Pb-aided transduction, but the benefit of elevated pH was more pronounced with PS. There was a similar enhancement with PS at elevated pH for a murine stem cell virus (MSCV) vector as for the MMLV vector. The benefit at pH 7.7 for PS-aided transduction was partially due to greater PS stability at elevated pH. Heat inactivating the serum supplement or adding protease inhibitors helped to stabilize PS. This increased the absolute transduction efficiency but decreased the relative benefit of elevated pH to a level similar to that for Pb-aided transduction. Incubating Pb with the vector at pH 7.1 for 10 min, prior to readjusting to pH 7.7 and transducing the cells, was sufficient to abrogate the beneficial effects of transduction at pH 7.7. In contrast, prior exposure of PS with vector at pH 7.1 did not affect subsequent transduction at pH 7.7. These results indicate that pH is an important variable in retroviral transduction and that the relative benefits of Pb or PS on retroviral vector transduction will vary with the pH, polymer addition method, and serum lot.

Original languageEnglish (US)
Pages (from-to)216-223
Number of pages8
JournalBiotechnology Progress
Volume19
Issue number1
DOIs
StatePublished - Jan 2003

ASJC Scopus subject areas

  • Biotechnology

Fingerprint

Dive into the research topics of 'Small increases in pH enhance retroviral vector transduction efficiency of NIH-3T3 cells'. Together they form a unique fingerprint.

Cite this