Sodium channel NaV1.9 mutations associated with insensitivity to pain dampen neuronal excitability

Jianying Huang, Carlos G. Vanoye, Alison Cutts, Y. Paul Goldberg, Sulayman D. Dib-Hajj, Charles J. Cohen, Stephen G. Waxman, Alfred L. George*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

32 Scopus citations

Abstract

Voltage-gated sodium channel (NaV) mutations cause genetic pain disorders that range from severe paroxysmal pain to a congenital inability to sense pain. Previous studies on NaV1.7 and NaV1.8 established clear relationships between perturbations in channel function and divergent clinical phenotypes. By contrast, studies of NaV1.9 mutations have not revealed a clear relationship of channel dysfunction with the associated and contrasting clinical phenotypes. Here, we have elucidated the functional consequences of a NaV1.9 mutation (L1302F) that is associated with insensitivity to pain. We investigated the effects of L1302F and a previously reported mutation (L811P) on neuronal excitability. In transfected heterologous cells, the L1302F mutation caused a large hyperpolarizing shift in the voltage-dependence of activation, leading to substantially enhanced overlap between activation and steady-state inactivation relationships. In transfected small rat dorsal root ganglion neurons, expression of L1302F and L811P evoked large depolarizations of the resting membrane potential and impaired action potential generation. Therefore, our findings implicate a cellular loss of function as the basis for impaired pain sensation. We further demonstrated that a U-shaped relationship between the resting potential and the neuronal action potential threshold explains why NaV1.9 mutations that evoke small degrees of membrane depolarization cause hyperexcitability and familial episodic pain disorder or painful neuropathy, while mutations evoking larger membrane depolarizations cause hypoexcitability and insensitivity to pain.

Original languageEnglish (US)
Pages (from-to)2805-2814
Number of pages10
JournalJournal of Clinical Investigation
Volume127
Issue number7
DOIs
StatePublished - Jun 30 2017

ASJC Scopus subject areas

  • Medicine(all)

Fingerprint Dive into the research topics of 'Sodium channel NaV1.9 mutations associated with insensitivity to pain dampen neuronal excitability'. Together they form a unique fingerprint.

Cite this