TY - GEN
T1 - Solar-blind photodetectors and focal plane arrays based on AlGaN
AU - McClintock, Ryan
AU - Razeghi, Manijeh
N1 - Publisher Copyright:
© COPYRIGHT SPIE. Downloading of the abstract is permitted for personal use only.
PY - 2015
Y1 - 2015
N2 - III-Nitride material system (AlGaInN) possesses unique optical, electrical and structural properties such as a wide tunable direct bandgap, inherent fast carrier dynamics; good carrier transport properties, high breakdown fields; and high robustness and chemical stability. Recent technological advances in the wide bandgap AlGaN portion of this material system have led to a renewed interest in ultraviolet (UV) photodetectors. These detectors find use in numerous applications in the defense, commercial and scientific arenas such as covert space-To-space communications, early missile threat detection, chemical and biological threat detection and spectroscopy, flame detection and monitoring, UV environmental monitoring, and UV astronomy.1,2,3 Back illuminated detectors operating in the solar blind region are of special interest. Back illumination allows the detector to be hybridized to a silicon read-out integrated circuit, epi-side down, and still collect light through the back of the transparent sapphire substrate. This allows the realization of solar blind focal plane arrays (FPAs) for imaging applications. Solar-blind FPAs are especially important because of the near total absence of any background radiation in this region. In this talk, we will present our recent back-illuminated solar-blind photodetector, mini-Array, and FPA results. By systematically optimizing the design of the structure we have realized external quantum efficiencies (EQE) of in excess of 89% for pixel-sized detectors. Based on the absence of any anti-reflection coating, this corresponds to nearly 100% internal quantum efficiency. At the same time, the dark current remains below ∼2 × 10-9 A/cm2 even at 10 volts of reverse bias. The detector has a very sharp falloff starting at 275 with the UV-solar rejection of better than three orders of magnitude, and a visible rejection ratio is more than 6 orders of magnitude. This high performance photodetector design was then used as the basis of the realization of solar-blind FPA. We demonstrated a 320×256 FPA with a peak detection wavelength of 278nm. The operability of the FPA was better than 92%, and excellent corrected imaging was obtained.
AB - III-Nitride material system (AlGaInN) possesses unique optical, electrical and structural properties such as a wide tunable direct bandgap, inherent fast carrier dynamics; good carrier transport properties, high breakdown fields; and high robustness and chemical stability. Recent technological advances in the wide bandgap AlGaN portion of this material system have led to a renewed interest in ultraviolet (UV) photodetectors. These detectors find use in numerous applications in the defense, commercial and scientific arenas such as covert space-To-space communications, early missile threat detection, chemical and biological threat detection and spectroscopy, flame detection and monitoring, UV environmental monitoring, and UV astronomy.1,2,3 Back illuminated detectors operating in the solar blind region are of special interest. Back illumination allows the detector to be hybridized to a silicon read-out integrated circuit, epi-side down, and still collect light through the back of the transparent sapphire substrate. This allows the realization of solar blind focal plane arrays (FPAs) for imaging applications. Solar-blind FPAs are especially important because of the near total absence of any background radiation in this region. In this talk, we will present our recent back-illuminated solar-blind photodetector, mini-Array, and FPA results. By systematically optimizing the design of the structure we have realized external quantum efficiencies (EQE) of in excess of 89% for pixel-sized detectors. Based on the absence of any anti-reflection coating, this corresponds to nearly 100% internal quantum efficiency. At the same time, the dark current remains below ∼2 × 10-9 A/cm2 even at 10 volts of reverse bias. The detector has a very sharp falloff starting at 275 with the UV-solar rejection of better than three orders of magnitude, and a visible rejection ratio is more than 6 orders of magnitude. This high performance photodetector design was then used as the basis of the realization of solar-blind FPA. We demonstrated a 320×256 FPA with a peak detection wavelength of 278nm. The operability of the FPA was better than 92%, and excellent corrected imaging was obtained.
KW - AlGaN
KW - Focal Plane Array
KW - Solar-Blind
KW - Ultraviolet
UR - http://www.scopus.com/inward/record.url?scp=84951868905&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84951868905&partnerID=8YFLogxK
U2 - 10.1117/12.2195390
DO - 10.1117/12.2195390
M3 - Conference contribution
AN - SCOPUS:84951868905
T3 - Proceedings of SPIE - The International Society for Optical Engineering
BT - Optical Sensing, Imaging, and Photon Counting
A2 - Brown, Gail J.
A2 - Razeghi, Manijeh
A2 - Temple, Dorota S.
PB - SPIE
T2 - Optical Sensing, Imaging, and Photon Counting
Y2 - 11 August 2015 through 13 August 2015
ER -