Abstract
We demonstrate that incorporation of a redox-active benzoquinoid ligand into a one-dimensional chain compound can give rise to a material that exhibits simultaneous solid-state redox switching of optical, magnetic, and electronic properties. Metalation of the ligand 4,5-bis(pyridine-2-carboxamido)-1,2-catechol (N,OLH4) with MnIII affords the chain compound Mn(N,OL)(DMSO). Structural and spectroscopic analysis of this compound show the presence of MnII centers bridged by N,OL2- ligands, resulting partially from a spontaneous ligand-to-metal electron transfer. Upon soaking in a solution of the reductant Cp2Co, Mn(N,OL)(DMSO) undergoes a ligand-centered solid-state reduction to [Mn(N,OL)]-, as revealed by a suite of techniques, including Raman and X-ray absorption spectroscopy. The ligand-based reduction engenders a dramatic modulation of the physical properties of the chain compound. An electrochromic response, evidenced by a color change from dark green to dark purple is accompanied by a nearly 40-fold increase in magnetic coupling strength, from J = -0.38(1) to -15.6(2) cm-1, and a 10,000-fold increase in electronic conductivity, from = 2.33(1) × 10-12 S/cm (Ea = 0.64(1) eV) to 8.61(1) × 10-8 S/cm (Ea = 0.39(1) eV). Importantly, the chemical reduction is reversible: treatment of the reduced compound with [Cp2Fe]+ regenerates the oxidized chain. Taken together, these results highlight the ability of benzoquinoid ligands to facilitate solid-state ligand-based redox reactions in nonporous coordination solids, giving rise to reversible switching of optical properties, magnetic exchange interactions, and electronic conductivity.
Original language | English (US) |
---|---|
Pages (from-to) | 6583-6590 |
Number of pages | 8 |
Journal | Journal of the American Chemical Society |
Volume | 138 |
Issue number | 20 |
DOIs | |
State | Published - May 25 2016 |
ASJC Scopus subject areas
- Catalysis
- General Chemistry
- Biochemistry
- Colloid and Surface Chemistry
Fingerprint
Dive into the research topics of 'Solid-State Redox Switching of Magnetic Exchange and Electronic Conductivity in a Benzoquinoid-Bridged MnII Chain Compound'. Together they form a unique fingerprint.Datasets
-
CCDC 1492976: Experimental Crystal Structure Determination
Jeon, I.-R. (Creator), Sun, L. (Creator), Negru, B. (Creator), Van Duyne, R. P. (Creator), Dinca, M. (Contributor) & Harris, T. D. (Creator), Cambridge Crystallographic Data Centre, 2016
DOI: 10.5517/ccdc.csd.cc1m3kjt, http://www.ccdc.cam.ac.uk/services/structure_request?id=doi:10.5517/ccdc.csd.cc1m3kjt&sid=DataCite
Dataset