Solid-State Redox Switching of Magnetic Exchange and Electronic Conductivity in a Benzoquinoid-Bridged MnII Chain Compound

Ie Rang Jeon, Lei Sun, Bogdan Negru, Richard P. Van Duyne, Mircea Dinca, T. David Harris*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

38 Scopus citations

Abstract

We demonstrate that incorporation of a redox-active benzoquinoid ligand into a one-dimensional chain compound can give rise to a material that exhibits simultaneous solid-state redox switching of optical, magnetic, and electronic properties. Metalation of the ligand 4,5-bis(pyridine-2-carboxamido)-1,2-catechol (N,OLH4) with MnIII affords the chain compound Mn(N,OL)(DMSO). Structural and spectroscopic analysis of this compound show the presence of MnII centers bridged by N,OL2- ligands, resulting partially from a spontaneous ligand-to-metal electron transfer. Upon soaking in a solution of the reductant Cp2Co, Mn(N,OL)(DMSO) undergoes a ligand-centered solid-state reduction to [Mn(N,OL)]-, as revealed by a suite of techniques, including Raman and X-ray absorption spectroscopy. The ligand-based reduction engenders a dramatic modulation of the physical properties of the chain compound. An electrochromic response, evidenced by a color change from dark green to dark purple is accompanied by a nearly 40-fold increase in magnetic coupling strength, from J = -0.38(1) to -15.6(2) cm-1, and a 10,000-fold increase in electronic conductivity, from = 2.33(1) × 10-12 S/cm (Ea = 0.64(1) eV) to 8.61(1) × 10-8 S/cm (Ea = 0.39(1) eV). Importantly, the chemical reduction is reversible: treatment of the reduced compound with [Cp2Fe]+ regenerates the oxidized chain. Taken together, these results highlight the ability of benzoquinoid ligands to facilitate solid-state ligand-based redox reactions in nonporous coordination solids, giving rise to reversible switching of optical properties, magnetic exchange interactions, and electronic conductivity.

Original languageEnglish (US)
Pages (from-to)6583-6590
Number of pages8
JournalJournal of the American Chemical Society
Volume138
Issue number20
DOIs
StatePublished - May 25 2016

ASJC Scopus subject areas

  • Catalysis
  • Chemistry(all)
  • Biochemistry
  • Colloid and Surface Chemistry

Fingerprint Dive into the research topics of 'Solid-State Redox Switching of Magnetic Exchange and Electronic Conductivity in a Benzoquinoid-Bridged Mn<sup>II</sup> Chain Compound'. Together they form a unique fingerprint.

Cite this