Abstract
We consider the problem of estimating an unknown coordinate-wise monotone function given noisy measurements, known as the isotonic regression problem. Often, only a small subset of the features affects the output. This motivates the sparse isotonic regression setting, which we consider here. We provide an upper bound on the expected VC entropy of the space of sparse coordinate-wise monotone functions, and identify the regime of statistical consistency of our estimator. We also propose a linear program to recover the active coordinates, and provide theoretical recovery guarantees. We close with experiments on cancer classification, and show that our method significantly outperforms several standard methods.
Original language | English (US) |
---|---|
Journal | Advances in Neural Information Processing Systems |
Volume | 32 |
State | Published - 2019 |
Event | 33rd Annual Conference on Neural Information Processing Systems, NeurIPS 2019 - Vancouver, Canada Duration: Dec 8 2019 → Dec 14 2019 |
ASJC Scopus subject areas
- Computer Networks and Communications
- Information Systems
- Signal Processing