Sparsity model for robust optical flow estimation at motion discontinuities

Xiaohui Shen*, Ying Wu

*Corresponding author for this work

Research output: Chapter in Book/Report/Conference proceedingConference contribution

33 Scopus citations

Abstract

This paper introduces a new sparsity prior to the estimation of dense flow fields. Based on this new prior, a complex flow field with motion discontinuities can be accurately estimated by finding the sparsest representation of the flow field in certain domains. In addition, a stronger additional sparsity constraint on the flow gradients is incorporated into the model to cope with the measurement noises. Robust estimation techniques are also employed to identify the outliers and to refine the results. This new sparsity model can accurately and reliably estimate the entire dense flow field from a small portion of measurements when other measurements are corrupted by noise. Experiments show that our method significantly outperforms traditional methods that are based on global or piecewise smoothness priors.

Original languageEnglish (US)
Title of host publication2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, CVPR 2010
Pages2456-2463
Number of pages8
DOIs
StatePublished - 2010
Event2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, CVPR 2010 - San Francisco, CA, United States
Duration: Jun 13 2010Jun 18 2010

Publication series

NameProceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition
ISSN (Print)1063-6919

Other

Other2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, CVPR 2010
Country/TerritoryUnited States
CitySan Francisco, CA
Period6/13/106/18/10

ASJC Scopus subject areas

  • Software
  • Computer Vision and Pattern Recognition

Fingerprint

Dive into the research topics of 'Sparsity model for robust optical flow estimation at motion discontinuities'. Together they form a unique fingerprint.

Cite this