Spin-Polarized Molecular Triplet States as Qubits: Phosphorus Hyperfine Coupling in the Triplet State of Benzoisophosphinoline

Joseph A. Christensen, Jiawang Zhou, Nikolai A. Tcyrulnikov, Matthew D. Krzyaniak*, Michael R. Wasielewski

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review


Advances in quantum information science (QIS) require the development of new molecular materials to serve as microwave addressable qubits that can be read out optically. Laser photoexcitation of organic π-conjugated molecules often results in spin-polarized phosphorescent triplet states that can be readily observed and manipulated using time-resolved electron paramagnetic resonance (EPR) techniques. Photoexcitation of N-mesityl-1,8-naphthalimide (M-NMI) and its phosphorus analogues, 2-mesitylbenzoisophosphinoline (M-BIPD) and 2-mesitylbenzoisophosphinoline oxide (M-BIPDO) results in ultrafast spin-orbit charge-transfer intersystem crossing to form the corresponding phosphorescent triplet states M-3NMI, M-3BIPD and M-3BIPDO. The ultrafast triplet formation dynamics, phosphorescence, and spin-polarized EPR spectra of these triplet states were examined. The most promising qubit candidate, M-3BIPD, was examined using pulse-EPR to measure its spin relaxation times, and pulse electron-nuclear double resonance spectroscopy to perform a two-qubit CNOT gate using the phosphorus nuclear spin.

Original languageEnglish (US)
Pages (from-to)7569-7574
Number of pages6
JournalJournal of Physical Chemistry Letters
Issue number18
StatePublished - Sep 17 2020

ASJC Scopus subject areas

  • Materials Science(all)
  • Physical and Theoretical Chemistry

Fingerprint Dive into the research topics of 'Spin-Polarized Molecular Triplet States as Qubits: Phosphorus Hyperfine Coupling in the Triplet State of Benzoisophosphinoline'. Together they form a unique fingerprint.

Cite this