TY - JOUR
T1 - SRp30c-dependent stimulation of survival motor neuron (SMN) exon 7 inclusion is facilitated by a direct interaction with hTra2β1
AU - Young, Philip J.
AU - DiDonato, Christine J.
AU - Hu, Diane
AU - Kothary, Rashmi
AU - Androphy, Elliot J.
AU - Lorson, Christian L.
PY - 2002/3/1
Y1 - 2002/3/1
N2 - Proximal spinal muscular atrophy (SMA) is caused by the homozygous loss of survival motor neuron (SMN1). SMN2, a nearly identical copy gene, is present in all SMA patients; however this gene cannot provide protection from disease-due to the aberrant splicing of a critical exon. SMN1-derived transcripts are exclusively full-length, whereas SMN2-derived transcripts predominantly lack SMN exon 7. A single non-polymorphic nucleotide difference (C in SMN1; T in SMN2) is responsible for the alternative splicing patterns. We have previously shown that transient expression of an SR-like splicing factor, hTra2β1, stimulates inclusion of exon 7 in SMN2-derived mini-gene transcripts through an interaction with the AG-rich exonic splice enhancer within exon 7. We now demonstrate that a second splicing factor, SRp30c, can stimulate SMN exon 7-inclusion and that this activity required the same AG-rich enhancer as hTra2β1. SRp30c did not directly associate with SMN exon 7; rather its association with the exonic enhancer was mediated by a direct interaction with hTra2β1. In the absence of the hTra2β1 binding site, SRp30c failed to complex with SMN exon 7. Taken together, these results identify SRp30c as a modulator of SMN exon 7-inclusion and provide insight into the molecular regulation of this critical exon.
AB - Proximal spinal muscular atrophy (SMA) is caused by the homozygous loss of survival motor neuron (SMN1). SMN2, a nearly identical copy gene, is present in all SMA patients; however this gene cannot provide protection from disease-due to the aberrant splicing of a critical exon. SMN1-derived transcripts are exclusively full-length, whereas SMN2-derived transcripts predominantly lack SMN exon 7. A single non-polymorphic nucleotide difference (C in SMN1; T in SMN2) is responsible for the alternative splicing patterns. We have previously shown that transient expression of an SR-like splicing factor, hTra2β1, stimulates inclusion of exon 7 in SMN2-derived mini-gene transcripts through an interaction with the AG-rich exonic splice enhancer within exon 7. We now demonstrate that a second splicing factor, SRp30c, can stimulate SMN exon 7-inclusion and that this activity required the same AG-rich enhancer as hTra2β1. SRp30c did not directly associate with SMN exon 7; rather its association with the exonic enhancer was mediated by a direct interaction with hTra2β1. In the absence of the hTra2β1 binding site, SRp30c failed to complex with SMN exon 7. Taken together, these results identify SRp30c as a modulator of SMN exon 7-inclusion and provide insight into the molecular regulation of this critical exon.
UR - http://www.scopus.com/inward/record.url?scp=0036501065&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0036501065&partnerID=8YFLogxK
M3 - Article
C2 - 11875052
AN - SCOPUS:0036501065
SN - 0964-6906
VL - 11
SP - 577
EP - 587
JO - Human molecular genetics
JF - Human molecular genetics
IS - 5
ER -