STABILITY OF PARALLEL SERVER SYSTEMS

Pascal Moyal, Ohad Perry

Research output: Contribution to journalArticlepeer-review

Abstract

The fundamental problem in the study of parallel-server systems is that of finding and analyzing “good” routing policies of arriving jobs to the servers. It is well known that, if full information regarding the workload process is available to a central dispatcher, then the join the shortest workload (JSW) policy, which assigns jobs to the server with the least workload, is the optimal assignment policy, in that it maximizes server utilization, and thus minimizes sojourn times. The join the shortest queue (JSQ) policy is an efficient dispatching policy when information is available only on the number of jobs with each of the servers, but not on their service requirements. If information on the state of the system is not available, other dispatching policies need to be employed, such as the power-of-d routing policy, in which each arriving job joins the shortest among d ≥ 1 queues sampled uniformly at random. (Under this latter policy, the system is known as the supermarket model.) In this paper we study the stability question of parallel server systems assuming that routing errors occur, so that arrivals may be routed to the “wrong” (not to the smallest) queue with a positive probability. We show that, even if a “non-idling” dispatching policy is employed, under which new arrivals are always routed to an idle server, if any is available, the performance of the system can be much worse than under the policy that chooses one of the servers uniformly at random. More specifically, we prove that the usual traffic intensity ρ < 1 does not guarantee that the system is stable.

Original languageEnglish (US)
JournalUnknown Journal
StatePublished - Apr 23 2019

ASJC Scopus subject areas

  • General

Fingerprint Dive into the research topics of 'STABILITY OF PARALLEL SERVER SYSTEMS'. Together they form a unique fingerprint.

Cite this