Stable, active CO2 reduction to formate via redox-modulated stabilization of active sites

Le Li, Adnan Ozden, Shuyi Guo, F. Pelayo Garcı́a de Arquer, Chuanhao Wang, Mingzhe Zhang, Jin Zhang, Haoyang Jiang, Wei Wang, Hao Dong, David Sinton, Edward H. Sargent, Miao Zhong*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

41 Scopus citations

Abstract

Electrochemical reduction of CO2 (CO2R) to formic acid upgrades waste CO2; however, up to now, chemical and structural changes to the electrocatalyst have often led to the deterioration of performance over time. Here, we find that alloying p-block elements with differing electronegativities modulates the redox potential of active sites and stabilizes them throughout extended CO2R operation. Active Sn-Bi/SnO2 surfaces formed in situ on homogeneously alloyed Bi0.1Sn crystals stabilize the CO2R-to-formate pathway over 2400 h (100 days) of continuous operation at a current density of 100 mA cm−2. This performance is accompanied by a Faradaic efficiency of 95% and an overpotential of ~ −0.65 V. Operating experimental studies as well as computational investigations show that the stabilized active sites offer near-optimal binding energy to the key formate intermediate *OCHO. Using a cation-exchange membrane electrode assembly device, we demonstrate the stable production of concentrated HCOO solution (3.4 molar, 15 wt%) over 100 h.

Original languageEnglish (US)
Article number5223
JournalNature communications
Volume12
Issue number1
DOIs
StatePublished - Dec 1 2021

ASJC Scopus subject areas

  • Chemistry(all)
  • Biochemistry, Genetics and Molecular Biology(all)
  • General
  • Physics and Astronomy(all)

Fingerprint

Dive into the research topics of 'Stable, active CO2 reduction to formate via redox-modulated stabilization of active sites'. Together they form a unique fingerprint.

Cite this