Abstract
This paper presents a method to determine stable pushing motions for a planar stack of polygonal parts. The approach consists of solving a series of subproblems where each part in the stack is pushing the parts ahead of it. The solutions to these subproblems are sets of stable motions, and their intersection is the set of stable motions for the entire stack. The motion of multiple parts depends on the exact locations of the centers of mass and the relative masses of the parts. If either or both of these is unknown, it is still possible to calculate a conservative set of motions guaranteed to be stable by using a center of mass uncertainty region.
Original language | English (US) |
---|---|
Pages | 3180-3185 |
Number of pages | 6 |
State | Published - Dec 26 2003 |
Event | 2003 IEEE/RSJ International Conference on Intelligent Robots and Systems - Las Vegas, NV, United States Duration: Oct 27 2003 → Oct 31 2003 |
Other
Other | 2003 IEEE/RSJ International Conference on Intelligent Robots and Systems |
---|---|
Country/Territory | United States |
City | Las Vegas, NV |
Period | 10/27/03 → 10/31/03 |
ASJC Scopus subject areas
- Control and Systems Engineering
- Software
- Computer Vision and Pattern Recognition
- Computer Science Applications