Stage-Rocked Electron Channeling for Crystal Orientation Mapping

Karl A. Hujsak, Benjamin D. Myers, Jann Grovogui, Vinayak P. Dravid*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

3 Scopus citations

Abstract

Microstructural analysis by crystal orientation mapping of bulk functional materials is an essential and routine operation in the engineering of material properties. Far and away the most successfully employed technique, Electron Backscattered Diffraction (EBSD), provides high spatial resolution information at the cost of limited angular resolution and a distorted imaging condition. In this work, we demonstrate a stage-rocked electron channeling approach as a low-cost orientation mapping alternative to EBSD. This is accomplished by automated electron channeling contrast imaging (ECCI) as the microscope stage physically tilts/rotates a sample through a reduced hemisphere of orientations followed by computational reconstruction of electron channeling patterns (ECP). Referred to as Orientation Mapping by Electron Channeling (OMEC), our method offers advantages in terms of local defect analysis, as it combines the advantages of selected area ECP (SACP) and ECCI. We also illustrate dynamic or "adaptive" sampling schemes to increase the throughput of the technique. Finally, we discuss the implications for sample analysis in which large 3D maps of ECCI images can be routinely constructed of challenging crystalline samples. As an electron channeling-based approach to orientation mapping, OMEC may open new routes to characterize crystalline materials with high angular and spatial resolution.

Original languageEnglish (US)
Article number5175
JournalScientific reports
Volume8
Issue number1
DOIs
StatePublished - Dec 1 2018

ASJC Scopus subject areas

  • General

Fingerprint Dive into the research topics of 'Stage-Rocked Electron Channeling for Crystal Orientation Mapping'. Together they form a unique fingerprint.

Cite this