Statistical gate sizing for timing yield optimization

Debjit Sinha*, Narendra V. Shenoy, Hai Zhou

*Corresponding author for this work

Research output: Chapter in Book/Report/Conference proceedingConference contribution

46 Scopus citations

Abstract

Variability in the chip design process has been relatively increasing with technology scaling to smaller dimensions. Using worst case analysis for circuit optimization severely over-constrains the system and results in solutions with excessive penalties. Statistical timing analysis and optimization have consequently emerged as a refinement of the traditional static timing approach for circuit design optimization. In this paper, we propose a statistical gate sizing methodology for timing yield improvement. We build statistical models for gate delays from library characterizations at multiple process corners and operating conditions. Statistical timing analysis is performed, which drives gate sizing for timing yield optimization. Experimental results are reported for the ISCAS and MCNC benchmarks. In addition, we provide insight into statistical properties of gate delays for a given technology library which intuitively explains when and why statistical optimization improves over static timing optimization.

Original languageEnglish (US)
Title of host publicationProceedings of theICCAD-2005
Subtitle of host publicationInternational Conference on Computer-Aided Design
Pages1034-1038
Number of pages5
DOIs
StatePublished - Dec 1 2005
EventICCAD-2005: IEEE/ACM International Conference on Computer-Aided Design, 2005 - San Jose, CA, United States
Duration: Nov 6 2005Nov 10 2005

Publication series

NameIEEE/ACM International Conference on Computer-Aided Design, Digest of Technical Papers, ICCAD
Volume2005
ISSN (Print)1092-3152

Other

OtherICCAD-2005: IEEE/ACM International Conference on Computer-Aided Design, 2005
CountryUnited States
CitySan Jose, CA
Period11/6/0511/10/05

ASJC Scopus subject areas

  • Software
  • Computer Science Applications
  • Computer Graphics and Computer-Aided Design

Fingerprint Dive into the research topics of 'Statistical gate sizing for timing yield optimization'. Together they form a unique fingerprint.

Cite this