TY - JOUR
T1 - Statistical gravitational waveform models
T2 - What to simulate next?
AU - Doctor, Zoheyr
AU - Farr, Ben
AU - Holz, Daniel E.
AU - Pürrer, Michael
N1 - Funding Information:
D. E. H. acknowledges valuable discussions with Salman Habib, Katrin Heitmann, David Higdon, and Michael Stein. Z. D. would like to thank Richard Chen for consultation on GPR. Z. D. is supported by NSF Graduate Research Fellowship grant DGE-1144082. Z. D., B. F., and D. E. H. were partially supported by NSF CAREER Grant No. PHY-1151836 and NSF Grant No. PHY-1708081. They were also supported in part by the Kavli Institute for Cosmological Physics at the University of Chicago through NSF Grant No. PHY-1125897 and an endowment from the Kavli Foundation. This work was completed in part with resources provided by the University of Chicago Research Computing Center. [1] 1 B. P. Abbott , R. Abbott , T. D. Abbott , Phys. Rev. Lett. 116 , 061102 ( 2016 ). PRLTAO 0031-9007 10.1103/PhysRevLett.116.061102 [2] 2 B. P. Abbott , R. Abbott , T. D. Abbott ( LIGO Scientific Collaboration and Virgo Collaboration ) , Phys. Rev. Lett. 116 , 241103 ( 2016 ). PRLTAO 0031-9007 10.1103/PhysRevLett.116.241103 [3] 3 B. P. Abbott , R. Abbott , T. D. Abbott ( LIGO Scientific and Virgo Collaboration ) , Phys. Rev. Lett. 118 , 221101 ( 2017 ). PRLTAO 0031-9007 10.1103/PhysRevLett.118.221101 [4] 4 B. P. Abbott , R. Abbott , T. D. Abbott , M. R. Abernathy , F. Acernese , K. Ackley , C. Adams , T. Adams , P. Addesso , R. X. Adhikari , Phys. Rev. Lett. 116 , 241102 ( 2016 ). PRLTAO 0031-9007 10.1103/PhysRevLett.116.241102 [5] 5 B. P. Abbott , R. Abbott , T. D. Abbott , M. R. Abernathy , F. Acernese , K. Ackley , C. Adams , T. Adams , P. Addesso , R. X. Adhikari , Astrophys. J. 818 , L22 ( 2016 ). ASJOAB 1538-4357 10.3847/2041-8205/818/2/L22 [6] 6 G. Lovelace , C. O. Lousto , J. Healy , M. A. Scheel , A. Garcia , R. O’Shaughnessy , M. Boyle , M. Campanelli , D. A. Hemberger , L. E. Kidder , H. P. Pfeiffer , B. Szilágyi , S. A. Teukolsky , and Y. Zlochower , Classical Quantum Gravity 33 , 244002 ( 2016 ). CQGRDG 0264-9381 10.1088/0264-9381/33/24/244002 [7] 7 B. P. Abbott ( Virgo, LIGO Scientific ) , Phys. Rev. D 94 , 064035 ( 2016 ). PRVDAQ 2470-0010 10.1103/PhysRevD.94.064035 [8] 8 S. Husa , S. Khan , M. Hannam , M. Pürrer , F. Ohme , X. Jiménez Forteza , and A. Bohé , Phys. Rev. D 93 , 044006 ( 2016 ). PRVDAQ 2470-0010 10.1103/PhysRevD.93.044006 [9] 9 S. Khan , S. Husa , M. Hannam , F. Ohme , M. Pürrer , X. Jiménez Forteza , and A. Bohé , Phys. Rev. D 93 , 044007 ( 2016 ). PRVDAQ 2470-0010 10.1103/PhysRevD.93.044007 [10] 10 A. Taracchini , Phys. Rev. D 89 , 061502 ( 2014 ). PRVDAQ 1550-7998 10.1103/PhysRevD.89.061502 [11] 11 S. Babak , A. Taracchini , and A. Buonanno , Phys. Rev. D 95 , 024010 ( 2017 ). PRVDAQ 2470-0010 10.1103/PhysRevD.95.024010 [12] 12 M. Hannam , P. Schmidt , A. Bohé , L. Haegel , S. Husa , F. Ohme , G. Pratten , and M. Pürrer , Phys. Rev. Lett. 113 , 151101 ( 2014 ). PRLTAO 0031-9007 10.1103/PhysRevLett.113.151101 [13] 13 A. Bohé , L. Shao , A. Taracchini , A. Buonanno , S. Babak , I. W. Harry , I. Hinder , S. Ossokine , M. Pürrer , V. Raymond , T. Chu , H. Fong , P. Kumar , H. P. Pfeiffer , M. Boyle , D. A. Hemberger , L. E. Kidder , G. Lovelace , M. A. Scheel , and B. Szilágyi , Phys. Rev. D 95 , 044028 ( 2017 ). PRVDAQ 2470-0010 10.1103/PhysRevD.95.044028 [14] 14 B. P. Abbott ( Virgo, LIGO Scientific ) , Classical Quantum Gravity 34 , 104002 ( 2017 ). CQGRDG 0264-9381 10.1088/1361-6382/aa6854 [15] 15 Y. Pan , A. Buonanno , A. Taracchini , L. E. Kidder , A. H. Mroué , H. P. Pfeiffer , M. A. Scheel , and B. Szilágyi , Phys. Rev. D 89 , 084006 ( 2014 ). PRVDAQ 1550-7998 10.1103/PhysRevD.89.084006 [16] 16 J. Blackman , S. E. Field , C. R. Galley , B. Szilágyi , M. A. Scheel , M. Tiglio , and D. A. Hemberger , Phys. Rev. Lett. 115 , 121102 ( 2015 ). PRLTAO 0031-9007 10.1103/PhysRevLett.115.121102 [17] 17 J. Blackman , S. E. Field , M. A. Scheel , C. R. Galley , D. A. Hemberger , P. Schmidt , and R. Smith , Phys. Rev. Lett. 115 , 121102 ( 2015 ). PRLTAO 0031-9007 10.1103/PhysRevLett.115.121102 [18] 18 R. O’Shaughnessy , J. Blackman , and S. E. Field , Classical Quantum Gravity 34 , 144002 ( 2017 ). CQGRDG 0264-9381 10.1088/1361-6382/aa7649 [19] 19 J. Lange , Phys. Rev. D 96 , 104041 ( 2017 ). PRVDAQ 2470-0010 10.1103/PhysRevD.96.104041 [20] 20 M. Pürrer , Classical Quantum Gravity 31 , 195010 ( 2014 ). CQGRDG 0264-9381 10.1088/0264-9381/31/19/195010 [21] 21 S. Khan , S. Husa , M. Hannam , F. Ohme , M. Pürrer , X. J. Forteza , and A. Bohé , Phys. Rev. D 93 , 044007 ( 2016 ). PRVDAQ 2470-0010 10.1103/PhysRevD.93.044007 [22] 22 C. J. Moore and J. R. Gair , Phys. Rev. Lett. 113 , 251101 ( 2014 ). PRLTAO 0031-9007 10.1103/PhysRevLett.113.251101 [23] 23 C. J. Moore , C. P. L. Berry , A. J. K. Chua , and J. R. Gair , Phys. Rev. D 93 , 064001 ( 2016 ). PRVDAQ 2470-0010 10.1103/PhysRevD.93.064001 [24] 24 S. E. Field , C. R. Galley , J. S. Hesthaven , J. Kaye , and M. Tiglio , Phys. Rev. X 4 , 031006 ( 2014 ). PRXHAE 2160-3308 10.1103/PhysRevX.4.031006 [25] We interpolate fixed-chirp-mass waveforms, whereas P14 interpolated fixed-total-mass waveforms. This results in interpolations which are over the same frequency range rather than interpolations over the same geometric frequency range. [26] 26 D. R. Jones , M. Schonlau , and W. J. Welch , J. Global Optim. 13 , 455 ( 1998 ). JGOPEO 0925-5001 10.1023/A:1008306431147 [27] 27 D. Higdon , M. Kennedy , J. C. Cavendish , J. A. Cafeo , and R. D. Ryne , SIAM J. Sci. Comput. 26 , 448 ( 2004 ). SJOCE3 1064-8275 10.1137/S1064827503426693 [28] We assume the prior mean is zero, as we only interpolate functions which are de-meaned, i.e. which have their mean subtracted off. [29] 29 C. E. Rasmussen and C. K. I. Williams , Gaussian Processes for Machine Learning (Adaptive Computation and Machine Learning) ( The MIT Press , Cambridge, MA, 2005 ). [30] See Sec. 4.1.1 in Rasmussen and Williams [29] for the definition of mean-square differentiability. [31] 31 I. Andrianakis and P. G. Challenor , Computational Statistics and Data Analysis 56 , 4215 ( 2012 ). CSDADW 0167-9473 10.1016/j.csda.2012.04.020 [32] The correlations between c i ’s are outside the scope of this paper, and will be considered in future work. [33] This noise curve can be found at https://dcc.ligo.org/LIGO-G1501223/public . [34] 34 F. Pedregosa , G. Varoquaux , A. Gramfort , V. Michel , B. Thirion , O. Grisel , M. Blondel , P. Prettenhofer , R. Weiss , V. Dubourg , J. Vanderplas , A. Passos , D. Cournapeau , M. Brucher , M. Perrot , and E. Duchesnay , J. Mach. Learn. Res. 12 , 2825 ( 2011 ). 1532-4435 [35] 35 E. Jones , T. Oliphant , P. Peterson , “
Publisher Copyright:
© 2017 American Physical Society.
PY - 2017/12/15
Y1 - 2017/12/15
N2 - Models of gravitational waveforms play a critical role in detecting and characterizing the gravitational waves (GWs) from compact binary coalescences. Waveforms from numerical relativity (NR), while highly accurate, are too computationally expensive to produce to be directly used with Bayesian parameter estimation tools like Markov-chain-Monte-Carlo and nested sampling. We propose a Gaussian process regression (GPR) method to generate reduced-order-model waveforms based only on existing accurate (e.g. NR) simulations. Using a training set of simulated waveforms, our GPR approach produces interpolated waveforms along with uncertainties across the parameter space. As a proof of concept, we use a training set of IMRPhenomD waveforms to build a GPR model in the 2-d parameter space of mass ratio q and equal-and-aligned spin χ1=χ2. Using a regular, equally-spaced grid of 120 IMRPhenomD training waveforms in q[1,3] and χ1[-0.5,0.5], the GPR mean approximates IMRPhenomD in this space to mismatches below 4.3×10-5. Our approach could in principle use training waveforms directly from numerical relativity. Beyond interpolation of waveforms, we also present a greedy algorithm that utilizes the errors provided by our GPR model to optimize the placement of future simulations. In a fiducial test case we find that using the greedy algorithm to iteratively add simulations achieves GPR errors that are ∼1 order of magnitude lower than the errors from using Latin-hypercube or square training grids.
AB - Models of gravitational waveforms play a critical role in detecting and characterizing the gravitational waves (GWs) from compact binary coalescences. Waveforms from numerical relativity (NR), while highly accurate, are too computationally expensive to produce to be directly used with Bayesian parameter estimation tools like Markov-chain-Monte-Carlo and nested sampling. We propose a Gaussian process regression (GPR) method to generate reduced-order-model waveforms based only on existing accurate (e.g. NR) simulations. Using a training set of simulated waveforms, our GPR approach produces interpolated waveforms along with uncertainties across the parameter space. As a proof of concept, we use a training set of IMRPhenomD waveforms to build a GPR model in the 2-d parameter space of mass ratio q and equal-and-aligned spin χ1=χ2. Using a regular, equally-spaced grid of 120 IMRPhenomD training waveforms in q[1,3] and χ1[-0.5,0.5], the GPR mean approximates IMRPhenomD in this space to mismatches below 4.3×10-5. Our approach could in principle use training waveforms directly from numerical relativity. Beyond interpolation of waveforms, we also present a greedy algorithm that utilizes the errors provided by our GPR model to optimize the placement of future simulations. In a fiducial test case we find that using the greedy algorithm to iteratively add simulations achieves GPR errors that are ∼1 order of magnitude lower than the errors from using Latin-hypercube or square training grids.
UR - http://www.scopus.com/inward/record.url?scp=85040172755&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85040172755&partnerID=8YFLogxK
U2 - 10.1103/PhysRevD.96.123011
DO - 10.1103/PhysRevD.96.123011
M3 - Article
AN - SCOPUS:85040172755
SN - 2470-0010
VL - 96
JO - Physical Review D
JF - Physical Review D
IS - 12
M1 - 123011
ER -