Statistical size effect in quasi-brittle structures: I. Is weibull theory applicable?

Zdeněk P. Bažant, Yunping Xi, Stuart G. Reid

Research output: Contribution to journalArticlepeer-review

98 Scopus citations

Abstract

The classical applications of Weibull statistical theory of size effect in quasi-brittle structures such as reinforced concrete structures, rock masses, ice plates, or tough ceramic parts are being reexamined in light of recent results. After a brief review of the statistical weakest-link model, distinctions between structures that fail by initiation of macroscopic crack growth (metal structures) and structures that exhibit large macroscopic crack growth prior to failure (quasi-brittle structures) are pointed out. It is shown that the classical Weibull-type approach ignores the stress redistributions and energy release due to stable large fracture growth prior to failure, which causes a strong deterministic size effect. Further, it is shown that, according to this classical theory, every structure is equivalent to a uniaxially loaded bar of variable cross section, which means that the mechanics of the failure process is ignored. Discrepancies with certain recent test data on the size effect are also pointed out. Modification of the Weibull approach that can eliminate these shortcomings is left for a subsequent paper.

Original languageEnglish (US)
Pages (from-to)2609-2622
Number of pages14
JournalJournal of Engineering Mechanics
Volume117
Issue number11
DOIs
StatePublished - Nov 1991

ASJC Scopus subject areas

  • Mechanics of Materials
  • Mechanical Engineering

Fingerprint Dive into the research topics of 'Statistical size effect in quasi-brittle structures: I. Is weibull theory applicable?'. Together they form a unique fingerprint.

Cite this