STATISTICAL STABILITY EFFECTS IN CONCRETE FAILURE

Zdenek P. Bazant*, Liisa Panula

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

17 Scopus citations

Abstract

Using a uniaxial localization model, it is shown that parallel elastic restraint increases ductility, while an increase in support flexibility or length of specimen reduces ductility. Statistical macroscopic nonhomogeneity of the specimen is modeled by a system of uniaxial parallel elements of random properties following the normal distribution. The stability analysis and Monte Carlo simulations explain that in such a system an increase of length or support flexibility reduces not only ductility but also the strength of the system. The effect on strength depends on the number of elements (width of specimen), which represents a new non-classical statistical size effect, and on the standard deviation of peak stress values within the parallel system. Existence of an inflection point and the prolonged tail on the descending branch is explained by the nonhomogeneity of the specimen, and the shape of the descending branch, along with the location of the inflection point, is obtained as a function of machine stiffness, parallel elastic restraint, and specimen length and width.

Original languageEnglish (US)
Pages (from-to)1195-1212
Number of pages18
JournalASCE J Eng Mech Div
Volume104
Issue number5
StatePublished - Jan 1 1978

ASJC Scopus subject areas

  • Environmental Science(all)
  • Engineering(all)
  • Earth and Planetary Sciences(all)

Fingerprint Dive into the research topics of 'STATISTICAL STABILITY EFFECTS IN CONCRETE FAILURE'. Together they form a unique fingerprint.

Cite this