Stellar collisions and blue straggler stars in dense globular clusters

Sourav Chatterjee, Frederic A. Rasio, Alison Sills, Evert Glebbeek

Research output: Contribution to journalArticlepeer-review

40 Scopus citations


Blue straggler stars (BSSs) are abundantly observed in all Galactic globular clusters (GGCs) where data exist. However, observations alone cannot reveal the relative importance of various formation channels or the typical formation times for this well-studied population of anomalous stars. Using a state-of-the-art Hénon-type Monte Carlo code that includes all relevant physical processes, we create 128 models with properties typical of the observed GGCs. These models include realistic numbers of single and binary stars, use observationally motivated initial conditions, and span large ranges in central density, concentration, binary fraction, and mass. Their properties can be directly compared with those of observed GGCs. We can easily identify the BSSs in our models and determine their formation channels and birth times. We find that for central densities above ~103 M pc-3, the dominant formation channel is stellar collisions, while for lower density clusters, mass transfer in binaries provides a significant contribution (up to 60% in our models). The majority of these collisions are binary-mediated, occurring during three-body and four-body interactions. As a result, a strong correlation between the specific frequency of BSSs and the binary fraction in a cluster can be seen in our models. We find that the number of BSSs in the core shows only a weak correlation with the collision rate estimator Γ traditionally used by observers, in agreement with the latest Hubble Space Telescope Advanced Camera for Surveys data. Using an idealized "full mixing" prescription for collision products, our models indicate that the BSSs observed today may have formed several Gyr ago. However, denser clusters tend to have younger (~1 Gyr) BSSs.

Original languageEnglish (US)
Article number106
JournalAstrophysical Journal
Issue number2
StatePublished - Nov 10 2013


  • blue stragglers
  • globular clusters: general
  • methods: numerical
  • methods: statistical
  • stars: kinematics and dynamics

ASJC Scopus subject areas

  • Astronomy and Astrophysics
  • Space and Planetary Science

Fingerprint Dive into the research topics of 'Stellar collisions and blue straggler stars in dense globular clusters'. Together they form a unique fingerprint.

Cite this