Abstract
An early substantial loss of basal forebrain cholinergic neurons (BFCNs) is a constant feature of Alzheimer's disease (AD) and is associated with deficits in spatial learning and memory. Induced pluripotent stem cells (iPSCs) derived from patients with AD as well as from normal controls could be efficiently differentiated into neurons with characteristics of BFCNs. We used BFCNs derived from iPSCs to model sporadic AD with a focus on patients with ApoE3/E4 genotypes (AD-E3/E4). BFCNs derived from AD-E3/E4 patients showed typical AD biochemical features evidenced by increased Aβ42/Aβ40 ratios. AD-E3/E4 neurons also exhibited altered responses to treatment with γ-secretase inhibitors compared to control BFCNs or neurons derived from patients with familial AD. BFCNs from patients with AD-E3/E4 also exhibited increased vulnerability to glutamate-mediated cell death which correlated with increased intracellular free calcium upon glutamate exposure. The ability to generate BFCNs with an AD phenotype is a significant step both for understanding disease mechanisms and for facilitating screening for agents that promote synaptic integrity and neuronal survival.
Original language | English (US) |
---|---|
Article number | 3 |
Journal | Molecular neurodegeneration |
Volume | 9 |
Issue number | 1 |
DOIs | |
State | Published - Jan 8 2014 |
Funding
We thank Dr. Kitamura from University of Tokyo for kindly providing us the pMXs vector and Plat-E virus packaging cell line. Ljuba Lyass from Stem Cell Core Facility of Northwestern University for help with cell culturing. Paul Mehl and Jeffery Nelson from Flow Cytometry Core Facility of Northwestern University for help with fac-sorting. And we thank Chian-yu Peng, Lixin Kan and Dilyan Dryanovski from Northwestern University for suggestions and inputs with experiments. This research if supported by NIH grants: R01 NS 20778 and R01 NS 20013.
Keywords
- Alzheimer's disease
- Aβ rise
- Aβ42/40 ratio
- Basal forebrain cholinergic neurons
- Calcium abnormalities
- Glutamate excitotoxicity
- Human induced pluripotent stem cells
ASJC Scopus subject areas
- Clinical Neurology
- Cellular and Molecular Neuroscience
- Molecular Biology