Stokes polarimetry imaging of dog prostate tissue

Jihoon Kim*, William K. Johnston, Jay Walsh

*Corresponding author for this work

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

Prostate cancer is the second leading cause of death in the United States in 2009. Radical prostatectomy (complete removal of the prostate) is the most common treatment for prostate cancer, however, differentiating prostate tissue from adjacent bladder, nerves, and muscle is difficult. Improved visualization could improve oncologic outcomes and decrease damage to adjacent nerves and muscle important for preservation of potency and continence. A novel Stokes polarimetry imaging (SPI) system was developed and evaluated using a dog prostate specimen in order to examine the feasibility of the system to differentiate prostate from bladder. The degree of linear polarization (DOLP) image maps from linearly polarized light illumination at different visible wavelengths (475, 510, and 650 nm) were constructed. The SPI system used the polarization property of the prostate tissue. The DOLP images allowed advanced differentiation by distinguishing glandular tissue of prostate from the muscular-stromal tissue in the bladder. The DOLP image at 650 nm effectively differentiated prostate and bladder by strong DOLP in bladder. SPI system has the potential to improve surgical outcomes in open or robotic-assisted laparoscopic removal of the prostate. Further in vivo testing is warranted.

Original languageEnglish (US)
Title of host publicationPhotonic Therapeutics and Diagnostics VI
Volume7548
DOIs
StatePublished - Dec 1 2010
EventPhotonic Therapeutics and Diagnostics VI - San Francisco, CA, United States
Duration: Jan 23 2010Jan 25 2010

Other

OtherPhotonic Therapeutics and Diagnostics VI
CountryUnited States
CitySan Francisco, CA
Period1/23/101/25/10

Keywords

  • polarization
  • prostate
  • RGB filters
  • Stokes parameters

ASJC Scopus subject areas

  • Electronic, Optical and Magnetic Materials
  • Biomaterials
  • Atomic and Molecular Physics, and Optics
  • Radiology Nuclear Medicine and imaging

Fingerprint Dive into the research topics of 'Stokes polarimetry imaging of dog prostate tissue'. Together they form a unique fingerprint.

Cite this