Stress biology: Complexity and multifariousness in health and disease

Matthias P. Mayer*, Laura Blair, Gregory L. Blatch, Thiago J. Borges, Ahmed Chadli, Gabriela Chiosis, Aurélie de Thonel, Albena Dinkova-Kostova, Heath Ecroyd, Adrienne L. Edkins, Takanori Eguchi, Monika Fleshner, Kevin P. Foley, Sotirios Fragkostefanakis, Jason Gestwicki, Pierre Goloubinoff, Jennifer A. Heritz, Christine M. Heske, Jonathan D. Hibshman, Jenny JoutsenWei Li, Michael Lynes, Marc L. Mendillo, Nahid Mivechi, Fortunate Mokoena, Yuka Okusha, Veena Prahlad, Elizabeth Repasky, Sara Sannino, Federica Scalia, Reut Shalgi, Lea Sistonen, Emily Sontag, Patricija van Oosten-Hawle, Anniina Vihervaara, Anushka Wickramaratne, Shawn Xiang Yang Wang, Tawanda Zininga

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

1 Scopus citations

Abstract

Preserving and regulating cellular homeostasis in the light of changing environmental conditions or developmental processes is of pivotal importance for single cellular and multicellular organisms alike. To counteract an imbalance in cellular homeostasis transcriptional programs evolved, called the heat shock response, unfolded protein response, and integrated stress response, that act cell-autonomously in most cells but in multicellular organisms are subjected to cell-nonautonomous regulation. These transcriptional programs downregulate the expression of most genes but increase the expression of heat shock genes, including genes encoding molecular chaperones and proteases, proteins involved in the repair of stress-induced damage to macromolecules and cellular structures. Sixty-one years after the discovery of the heat shock response by Ferruccio Ritossa, many aspects of stress biology are still enigmatic. Recent progress in the understanding of stress responses and molecular chaperones was reported at the 12th International Symposium on Heat Shock Proteins in Biology, Medicine and the Environment in the Old Town Alexandria, VA, USA from 28th to 31st of October 2023.

Original languageEnglish (US)
Pages (from-to)143-157
Number of pages15
JournalCell Stress and Chaperones
Volume29
Issue number1
DOIs
StatePublished - Feb 2024

Keywords

  • Heat shock proteins
  • Heat shock response
  • Heat shock transcription factors
  • Molecular chaperones
  • Protein folding diseases
  • Stress response

ASJC Scopus subject areas

  • Biochemistry
  • Cell Biology

Fingerprint

Dive into the research topics of 'Stress biology: Complexity and multifariousness in health and disease'. Together they form a unique fingerprint.

Cite this