## Abstract

A half-space containing a surface-breaking crack of uniform depth is subjected to three-dimensional dynamic loading. The elastodynamic stress-analysis problem has been decomposed into two problems, which are symmetric and antisymmetric, respectively, relative to the plane of the crack. The formulation of each problem has been reduced to a system of singular integral equations of the first kind. The symmetric problem is governed by a single integral equation for the opening-mode dislocation density. A pair of coupled integral equations for the two sliding-mode dislocation densities govern the antisymmetric problem. The systems of integral equations are solved numerically. The stress-intensity factors are obtained directly from the dislocation densities. The formulation is valid for arbitrary 3-D loading of the half-space. As an example, an applied stress field corresponding to an incident Rayleigh surface wave has been considered. The dependence of the stress-intensity factors on the frequency, and on the angle of incidence, is displayed in a set of figures.

Original language | English (US) |
---|---|

Pages (from-to) | 89-102 |

Number of pages | 14 |

Journal | Journal of Elasticity |

Volume | 15 |

Issue number | 1 |

DOIs | |

State | Published - Mar 1985 |

Externally published | Yes |

## ASJC Scopus subject areas

- General Materials Science
- Mechanics of Materials
- Mechanical Engineering