Stretching the skin immediately enhances perceived stiffness and gradually enhances the predictive control of grip force

Mor Farajian, Raz Leib, Hanna Kossowsky, Tomer Zaidenberg, Ferdinando A. Mussa-Ivaldi, Ilana Nisky*, Eilon Vaadia

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

17 Scopus citations

Abstract

When manipulating objects, we use kinesthetic and tactile information to form an internal representation of their mechanical properties for cognitive perception and for preventing their slippage using predictive control of grip force. A major challenge in understanding the dissociable contributions of tactile and kinesthetic information to perception and action is the natural coupling between them. Unlike previous studies that addressed this question either by focusing on impaired sensory processing in patients or using local anesthesia, we used a behavioral study with a programmable mechatronic device that stretches the skin of the fingertips to address this issue in the intact sensorimotor system. We found that artificial skin-stretch increases the predictive grip force modulation in anticipation of the load force. Moreover, the stretch causes an immediate illusion of touching a harder object that does not depend on the gradual development of the predictive modulation of grip force.

Original languageEnglish (US)
Article numbere52653
JournaleLife
Volume9
DOIs
StatePublished - Apr 2020

Funding

The authors thank Amit Milstein, Zhan Fan Quek, and Eli Peretz for their help and advice in designing and building the skin-stretch device, and Guy Avraham for valuable comments on the manuscript. This study is supported by the Binational United-States Israel Science Foundation (grant no. 2016850), by the National Science Foundation (grant no. 1632259), by the Israeli Science Foundation (grant 823/15), by the Ministry of Science and Technology (Israel-Italy virtual lab on ‘Artificial Soma-tosensation for Humans and Humanoids’), and by the Helmsley Charitable Trust through the Agricultural, Biological and Cognitive Robotics Initiative of Ben-Gurion University of Negev, Israel. Mor Farajian was supported by the Tzin Fellowship. Hanna Kossowsky was supported by the Lachish Fellowship.

ASJC Scopus subject areas

  • General Biochemistry, Genetics and Molecular Biology
  • General Immunology and Microbiology
  • General Neuroscience

Fingerprint

Dive into the research topics of 'Stretching the skin immediately enhances perceived stiffness and gradually enhances the predictive control of grip force'. Together they form a unique fingerprint.

Cite this