Strongly nonlinear optical glass fibers from noncentrosymmetric phase-change chalcogenide materials

Research output: Contribution to journalArticlepeer-review

82 Scopus citations

Abstract

We report that the one-dimensional polar selenophosphate compounds APSe6 (A = K, Rb), which show crystal-glass phase-change behavior, exhibit strong second harmonic generation (SHG) response in both crystal and glassy forms. The crystalline materials are type-I phase-matchable with SHG coefficients χ(2) of 151.3 and 149.4 pm V-1 for K + and Rb+ salts, respectively, which is the highest among phase-matchable nonlinear optical (NLO) materials with band gaps over 1.0 eV. The glass of APSe6 exhibits comparable SHG intensities to the top infrared NLO material AgGaSe2 without any poling treatments. APSe6 exhibit excellent mid-IR transparency. We demonstrate that starting from noncentrosymmetric phase-change materials such as APSe6 (A = K, Rb), we can obtain optical glass fibers with strong, intrinsic, and temporally stable second-order nonlinear optical (NLO) response. The as-prepared glass fibers exhibit SHG and difference frequency generation (DFG) responses over a wide range of wavelengths. Raman spectroscopy and pair distribution function (PDF) analyses provide further understanding of the local structure in amorphous state of KPSe6 bulk glass and glass fiber. We propose that this approach can be widely applied to prepare permanent NLO glass from materials that undergo a phase-change process.

Original languageEnglish (US)
Pages (from-to)384-389
Number of pages6
JournalJournal of the American Chemical Society
Volume132
Issue number1
DOIs
StatePublished - Jan 13 2010

ASJC Scopus subject areas

  • Catalysis
  • Chemistry(all)
  • Biochemistry
  • Colloid and Surface Chemistry

Fingerprint

Dive into the research topics of 'Strongly nonlinear optical glass fibers from noncentrosymmetric phase-change chalcogenide materials'. Together they form a unique fingerprint.

Cite this