TY - JOUR
T1 - Structural characterization of multiple pyoverdines secreted by two Pseudomonas strains using liquid chromatography-high resolution tandem mass spectrometry with varying dissociation energies
AU - Wei, Hua
AU - Aristilde, Ludmilla
N1 - Funding Information:
We are grateful to Dr. Rania Abou-Kandil for providing the P. fluorescens strain. We thank David F. Flannelly and Matthew A. Kukurugya for commenting on earlier versions of the manuscript. This work was supported in part by a Research Starter grant from the U.S. National Science Foundation (SSB 1337292) from the Division of Systems and Synthetic Biology.
Publisher Copyright:
© 2015 Springer-Verlag Berlin Heidelberg.
PY - 2015/6/28
Y1 - 2015/6/28
N2 - Abstract High-affinity iron (Fe)-scavenging molecules, or siderophores, are secreted by microorganisms to acquire and compete for Fe. Pyoverdine (PVD), the primary siderophore produced by Pseudomonas, consists of a dihydroxyquinoline-type chromophore, a peptide chain of variable length and conformation, and a side chain composed of a dicarboxylic acid or its monoamide derivative. Elucidation of the PVD structures secreted by different Pseudomonas strains is an important step toward understanding their Fe-transport strategies. In this study, we characterized multiple PVDs secreted by Pseudomonas putida KT2440 and Pseudomonas fluorescens RA12 using ultra-high performance liquid chromatography coupled with high-resolution quadrupole-orbitrap tandem mass spectrometry. To avoid purification steps prior to characterizing the bacterial supernatants, PVD candidates were identified by extracting fragments of the dihydroxyquinoline component from the chromatographic peaks. Varying collisional dissociation energies were subsequently applied to achieve, with high mass accuracy, a broad coverage of fragments of the entire PVD. Our approach allowed us to discriminate between three different PVD structures in the secretion of each strain. The three PVDs of P. putida possess the same peptide chain of seven amino acids, Asp-Orn-OHAsp-Dab-Gly-Ser-cOHOrn, with a cyclicized portion present in two of the PVDs. For P. fluorescens, two of the PVDs had the same peptide chain of 13 amino acids, Ala-Lys-Gly-Gly-Ala-OHAsp-Gly-Ser-Ala-Ala-Ala-Ala-cOHOrn, whereas a third PVD had a Ser substituting for the first Ala. The side chain of the PVDs was either succinic acid or succinamide. The present approach can be employed for simultaneous structural characterization of several peptidic siderophores and related molecules in bacterial secretions. [Figure not available: see fulltext.]
AB - Abstract High-affinity iron (Fe)-scavenging molecules, or siderophores, are secreted by microorganisms to acquire and compete for Fe. Pyoverdine (PVD), the primary siderophore produced by Pseudomonas, consists of a dihydroxyquinoline-type chromophore, a peptide chain of variable length and conformation, and a side chain composed of a dicarboxylic acid or its monoamide derivative. Elucidation of the PVD structures secreted by different Pseudomonas strains is an important step toward understanding their Fe-transport strategies. In this study, we characterized multiple PVDs secreted by Pseudomonas putida KT2440 and Pseudomonas fluorescens RA12 using ultra-high performance liquid chromatography coupled with high-resolution quadrupole-orbitrap tandem mass spectrometry. To avoid purification steps prior to characterizing the bacterial supernatants, PVD candidates were identified by extracting fragments of the dihydroxyquinoline component from the chromatographic peaks. Varying collisional dissociation energies were subsequently applied to achieve, with high mass accuracy, a broad coverage of fragments of the entire PVD. Our approach allowed us to discriminate between three different PVD structures in the secretion of each strain. The three PVDs of P. putida possess the same peptide chain of seven amino acids, Asp-Orn-OHAsp-Dab-Gly-Ser-cOHOrn, with a cyclicized portion present in two of the PVDs. For P. fluorescens, two of the PVDs had the same peptide chain of 13 amino acids, Ala-Lys-Gly-Gly-Ala-OHAsp-Gly-Ser-Ala-Ala-Ala-Ala-cOHOrn, whereas a third PVD had a Ser substituting for the first Ala. The side chain of the PVDs was either succinic acid or succinamide. The present approach can be employed for simultaneous structural characterization of several peptidic siderophores and related molecules in bacterial secretions. [Figure not available: see fulltext.]
KW - HR/AM
KW - Peptide
KW - Siderophore
KW - UHPLC
UR - http://www.scopus.com/inward/record.url?scp=84938403482&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84938403482&partnerID=8YFLogxK
U2 - 10.1007/s00216-015-8659-5
DO - 10.1007/s00216-015-8659-5
M3 - Article
C2 - 25895945
AN - SCOPUS:84938403482
VL - 407
SP - 4629
EP - 4638
JO - Fresenius Zeitschrift fur Analytische Chemie
JF - Fresenius Zeitschrift fur Analytische Chemie
SN - 0016-1152
IS - 16
M1 - 8659
ER -